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Transformers

Transformers represent one of the most important developments in deep learning.
They are based on a processing concept called attention, which allows a network to
give different weights to different inputs, with weighting coefficients that themselves
depend on the input values, thereby capturing powerful inductive biases related to
sequential and other forms of data.

These models are known as transformers because they transform a set of vec-
tors in some representation space into a corresponding set of vectors, having the
same dimensionality, in some new space. The goal of the transformation is that the
new space will have a richer internal representation that is better suited to solving
downstream tasks. Inputs to a transformer can take the form of unstructured sets
of vectors, ordered sequences, or more general representations, giving transformers
broad applicability.

Transformers were originally introduced in the context of natural language pro-
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cessing, or NLP (where a ‘natural’ language is one such as English or Mandarin) and
have greatly surpassed the previous state-of-the-art approaches based on recurrent
neural networks (RNNs). Transformers have subsequently been found to achieve
excellent results in many other domains. For example, vision transformers often
outperform CNNs in image processing tasks, whereas multimodal transformers that
combine multiple types of data, such as text, images, audio, and video, are amongst
the most powerful deep learning models.

One major advantage of transformers is that transfer learning is very effective, so
that a transformer model can be trained on a large body of data and then the trained
model can be applied to many downstream tasks using some form of fine-tuning. A
large-scale model that can subsequently be adapted to solve multiple different tasks
is known as a foundation model. Furthermore, transformers can be trained in a self-
supervised way using unlabelled data, which is especially effective with language
models since transformers can exploit vast quantities of text available from the inter-
net and other sources. The scaling hypothesis asserts that simply by increasing the
scale of the model, as measured by the number of learnable parameters, and train-
ing on a commensurately large data set, significant improvements in performance
can be achieved, even with no architectural changes. Moreover, the transformer is
especially well suited to massively parallel processing hardware such as graphical
processing units, or GPUs, allowing exceptionally large neural network language
models having of the order of a trillion (10'?) parameters to be trained in reason-
able time. Such models have extraordinary capabilities and show clear indications
of emergent properties that have been described as the early signs of artificial general
intelligence (Bubeck et al., 2023).

The architecture of a transformer can seem complex, or even daunting, to a
newcomer as it involves multiple different components working together, in which
the various design choices can seem arbitrary. In this chapter we therefore aim to give
a comprehensive step-by-step introduction to all the key ideas behind transformers
and to provide clear intuition to motivate the design of the various elements. We first
describe the transformer architecture and then focus on natural language processing,
before exploring other application domains.

Attention

Section 12.2.5

The fundamental concept that underpins a transformer is attention. This was orig-
inally developed as an enhancement to RNNs for machine translation (Bahdanau,
Cho, and Bengio, 2014). However, Vaswani et al. (2017) later showed that signifi-
cantly improved performance could be obtained by eliminating the recurrence struc-
ture and instead focusing exclusively on the attention mechanism. Today, transform-
ers based on attention have completely superseded RNNs in almost all applications.

We will motivate the use of attention using natural language as an example,
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[ I ][swam] (across)[ the ][river][ to ][ get ][ to ][ the ][other] [bank]

[ I ][swam] (across)[ the ][river][ to ][ get ][ to ][ the ][other] [bank]

Figure 12.1 Schematic illustration of attention in which the interpretation of the word ‘bank’ is influenced by the
words ‘river’ and ‘swam’, with the thickness of each line being indicative of the strength of its influence.

although it has much broader applicability. Consider the following two sentences:

| swam across the river to get to the other bank.
| walked across the road to get cash from the bank.

Here the word ‘bank’ has different meanings in the two sentences. However, this
can be detected only by looking at the context provided by other words in the se-
quence. We also see that some words are more important than others in determining
the interpretation of ‘bank’. In the first sentence, the words ‘swam’ and ‘river’ most
strongly indicate that ‘bank’ refers to the side of a river, whereas in the second sen-
tence, the word ‘cash’ is a strong indicator that ‘bank’ refers to a financial institution.
We see that to determine the appropriate interpretation of ‘bank’, a neural network
processing such a sentence should attend to, in other words rely more heavily on,
specific words from the rest of the sequence. This concept of attention is illustrated
in Figure 12.1.

Moreover, we also see that the particular locations that should receive more
attention depend on the input sequence itself: in the first sentence it is the second and
fifth words that are important whereas in the second sentence it is the eighth word.
In a standard neural network, different inputs will influence the output to different
extents according to the values of the weights that multiply those inputs. Once the
network is trained, however, those weights, and their associated inputs, are fixed.
By contrast, attention uses weighting factors whose values depend on the specific
input data. Figure 12.2 shows the attention weights from a section of a transformer
network trained on natural language.

When we discuss natural language processing, we will see how word embed-
ding can be used to map words into vectors in an embedding space. These vectors
can then be used as inputs for subsequent neural network processing. These embed-
dings capture elementary semantic properties, for example by mapping words with
similar meanings to nearby locations in the embedding space. One characteristic of
such embeddings is that a given word always maps to the same embedding vector.
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An example of learned attention weights. [From Vaswani et al. (2017) with permission.]

A transformer can be viewed as a richer form of embedding in which a given vector
is mapped to a location that depends on the other vectors in the sequence. Thus,
the vector representing ‘bank’ in our example above could map to different places
in a new embedding space for the two different sentences. For example, in the first
sentence the transformed representation might put ‘bank’ close to ‘water’ in the em-
bedding space, whereas in the second sentence the transformed representation might
put it close to ‘money’.

As an example of attention, consider the modelling of proteins. We can view
a protein as a one-dimensional sequence of molecular units called amino acids. A
protein can comprise potentially hundreds or thousands of such units, each of which
is given by one of 22 possibilities. In a living cell, a protein folds up into a three-
dimensional structure in which amino acids that are widely separated in the one-
dimensional sequence can become physically close in three-dimensional space and
thereby interact. Transformer models allows these distant amino acids to ‘attend’ to
each other thereby greatly improving the accuracy with which their 3-dimensional
structure can be modelled (Vig et al., 2020).

12.1.1 Transformer processing

The input data to a transformer is a set of vectors {x,,} of dimensionality D,
where n = 1,..., N. We refer to these data vectors as fokens, where a token might,
for example, correspond to a word within a sentence, a patch within an image, or
an amino acid within a protein. The elements x,,; of the tokens are called features.
Later we will see how to construct these token vectors for natural language data and
for images. A powerful property of transformers is that we do not have to design a
new neural network architecture to handle a mix of different data types but instead
can simply combine the data variables into a joint set of tokens.

Before we can gain a clear understanding of the operation of a transformer, it
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is important to be precise about notation. We will follow the standard convention
and combine the data vectors into a matrix X of dimensions /N x D in which the
nth row comprises the token vector xE, and where n = 1,..., N labels the rows,
as illustrated in Figure 12.3. Note that this matrix represents one set of input tokens,
and that for most applications, we will require a data set containing many sets of
tokens, such as independent passages of text where each word is represented as one
token. The fundamental building block of a transformer is a function that takes a
data matrix as input and creates a transformed matrix X of the same dimensionality
as the output. We can write this function in the form

X = TransformerLayer [X] . (12.1)

We can then apply multiple transformer layers in succession to construct deep net-
works capable of learning rich internal representations. Each transformer layer con-
tains its own weights and biases, which can be learned using gradient descent using
an appropriate cost function, as we will discuss in detail later in the chapter.

A single transformer layer itself comprises two stages. The first stage, which im-
plements the attention mechanism, mixes together the corresponding features from
different token vectors across the columns of the data matrix, whereas the second
stage then acts on each row independently and transforms the features within each
token vector. We start by looking at the attention mechanism.

12.1.2 Attention coefficients

Suppose that we have a set of input tokens X, ...,xy in an embedding space
and we want to map this to another setyy, . . ., y 5 having the same number of tokens
but in a new embedding space that captures a richer semantic structure. Consider a
particular output vector y,,. The value of y,, should depend not just on the corre-
sponding input vector x,, but on all the vectors x1, . . ., X in the set. With attention,
this dependence should be stronger for those inputs x,,, that are particularly impor-
tant for determining the modified representation of y,,. A simple way to achieve this
is to define each output vector y,, to be a linear combination of the input vectors



362 12. TRANSFORMERS

Exercise 12.1

Xy, ..., Xy with weighting coefficients a,,,:
N
Yn = Z ApmXm (122)
m=1

where a,,,,, are called attention weights. The coefficients should be close to zero for
input tokens that have little influence on the output y,, and largest for inputs that
have most influence. We therefore constrain the coefficients to be non-negative to
avoid situations in which one coefficient can become large and positive while another
coefficient compensates by becoming large and negative. We also want to ensure that
if an output pays more attention to a particular input, this will be at the expense of
paying less attention to the other inputs, and so we constrain the coefficients to sum
to unity. Thus, the weighting coefficients must satisfy the following two constraints:

Apm = 0 (12.3)
N

Z anm = 1. (12.4)

m=1

Together these imply that each coefficient lies in the range 0 < @y, < 1 and so the
coefficients define a ‘partition of unity’. For the special case a,,,,,, = 1, it follows that
Gnm = 0 for n # m, and therefore y,,, = x,,, so that the input vector is unchanged
by the transformation. More generally, the output y,,, is a blend of the input vectors
with some inputs given more weight than others.

Note that we have a different set of coefficients for each output vector y,,, and
the constraints (12.3) and (12.4) apply separately for each value of n. These co-
efficients a,,, depend on the input data, and we will shortly see how to calculate
them.

12.1.3 Self-attention

The next question is how to determine the coefficients a,,,,. Before we discuss
this in detail, it is useful to first introduce some terminology taken from the field of
information retrieval. Consider the problem of choosing which movie to watch in
an online movie streaming service. One approach would be to associate each movie
with a list of attributes describing things such as the genre (comedy, action, etc.), the
names of the leading actors, the length of the movie, and so on. The user could then
search through a catalogue to find a movie that matches their preferences. We could
automate this by encoding the attributes of each movie in a vector called the key.
The corresponding movie file itself is called a value. Similarly, the user could then
provide their own personal vector of values for the desired attributes, which we call
the query. The movie service could then compare the query vector with all the key
vectors to find the best match and send the corresponding movie to the user in the
form of the value file. We can think of the user ‘attending’ to the particular movie
whose key most closely matches their query. This would be considered a form of
hard attention in which a single value vector is returned. For the transformer, we
generalize this to soft attention in which we use continuous variables to measure
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the degree of match between queries and keys and we then use these variables to
weight the influence of the value vectors on the outputs. This will also ensure that
the transformer function is differentiable and can therefore be trained by gradient
descent.

Following the analogy with information retrieval, we can view each of the input
vectors x,, as a value vector that will be used to create the output tokens. We also use
the vector x,, directly as the key vector for input token n. That would be analogous
to using the movie itself to summarize the characteristics of the movie. Finally, we
can use X,, as the query vector for output y,,, which can then be compared to each
of the key vectors. To see how much the token represented by x,, should attend to
the token represented by x,,, we need to work out how similar these vectors are.
One simple measure of similarity is to take their dot product x| X,,,. To impose the
constraints (12.3) and (12.4), we can define the weighting coefficients a,,,, by using
the softmax function to transform the dot products:

T
G = —— PO Xm) (12.5)

S exXp(XT X,

Note that in this case there is no probabilistic interpretation of the softmax function
and it is simply being used to normalize the attention weights appropriately.

So in summary, each input vector x,, is transformed to a corresponding output
vector y,, by taking a linear combination of input vectors of the form (12.2) in which
the weight a,,,,, applied to input vector x,, is given by the softmax function (12.5)
defined in terms of the dot product X x,,, between the query x,, for input n and the
key x,, associated with input m. Note that, if all the input vectors are orthogonal,
then each output vector is simply equal to the corresponding input vector so that
Ym =Xpmform=1... N.

We can write (12.2) in matrix notation by using the data matrix X, along with
the analogous N x D output matrix Y, whose rows are given by y,,, so that

Y = Softmax [XX"] X (12.6)

where Softmax|[L] is an operator that takes the exponential of every element of a
matrix L and then normalizes each row independently to sum to one. From now on,
we will focus on matrix notation for clarity.

This process is called self-attention because we are using the same sequence to
determine the queries, keys, and values. We will encounter variants of this attention
mechanism later in this chapter. Also, because the measure of similarity between
query and key vectors is given by a dot product, this is known as dot-product self-
attention.

12.1.4 Network parameters

As it stands, the transformation from input vectors {x,, } to output vectors {y, }
is fixed and has no capacity to learn from data because it has no adjustable parame-
ters. Furthermore, each of the feature values within a token vector x,, plays an equal
role in determining the attention coefficients, whereas we would like the network to
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have the flexibility to focus more on some features than others when determining
token similarity. We can address both issues if we define modified feature vectors
given by a linear transformation of the original vectors in the form

X =XU (12.7)

where U is a D x D matrix of learnable weight parameters, analogous to a ‘layer’
in a standard neural network. This gives a modified transformation of the form

Y = Softmax [XUU"X"] XU. (12.8)
Although this has much more flexibility, it has the property that the matrix
Xuutx® (12.9)

is symmetric, whereas we would like the attention mechanism to support significant
asymmetry. For example, we might expect that ‘chisel’ should be strongly associ-
ated with ‘tool’ since every chisel is a tool, whereas ‘tool’ should only be weakly
associated with ‘chisel’ because there are many other kinds of tools besides chis-
els. Although the softmax function means the resulting matrix of attention weights
is not itself symmetric, we can create a much more flexible model by allowing the
queries and the keys to have independent parameters. Furthermore, the form (12.8)
uses the same parameter matrix U to define both the value vectors and the attention
coefficients, which again seems like an undesirable restriction.

We can overcome these limitations by defining separate query, key, and value
matrices each having their own independent linear transformations:

Q=XWW (12.10)
K=XW® (12.11)
V=XwWW (12.12)

where the weight matrices W (@, W& and W) represent parameters that will
be learned during the training of the final transformer architecture. Here the matrix
W& has dimensionality D x D, where Dy is the length of the key vector. The
matrix W (@ must have the same dimensionality D x D) as W& so that we can
form dot products between the query and key vectors. A typical choice is Dy, = D.
Similarly, W) is a matrix of size D x D, where D,, governs the dimensionality of
the output vectors. If we set D, = D, so that the output representation has the same
dimensionality as the input, this will facilitate the inclusion of residual connections,
which we discuss later. Also, multiple transformer layers can be stacked on top of
each other if each layer has the same dimensionality. We can then generalize (12.6)
to give

Y = Softmax [QK"]| V (12.13)

where QK™ has dimension N x N, and the matrix Y has dimension N x D,. The
calculation of the matrix QK™ is illustrated in Figure 12.4, whereas the evaluation
of the matrix Y is illustrated in Figure 12.5.



Figure 12.4

Section 6.2.1

Figure 12.5 lllustration of the evaluation ( A

of the output from an attention layer given

the query, key, and value matrices Q, O

K, and V, respectively. The entry at

the position highlighted in the output ma- Y = Softmax < QK" > X A%

trix Y is obtained from the dot prod-
uct of the highlighted row and column
of the Softmax [QK™] and V matrices,

respectively.

12.1. Attention 365

X W (@ = Q
D x D
X N x D QK™
N x D y —— _ K N x N
D x D
N x D

lllustration of the evaluation of the matrix QK™, which determines the attention coeffi-
cients in a transformer. The input X is separately transformed using (12.10) and (12.11)
to give the query matrix Q and key matrix K, respectively, which are then multiplied to-
gether.

In practice we can also include bias parameters in these linear transformations.
However, the bias parameters can be absorbed into the weight matrices, as we did
with standard neural networks, by augmenting the data matrix X with an additional
column of 1’s and by augmenting the weight matrices with an additional row of
parameters to represent the biases. From now on we will treat the bias parameters as
implicit to avoid cluttering the notation.

Compared to a conventional neural network, the signal paths have multiplicative
relations between activation values. Whereas standard networks multiply activations
by fixed weights, here the activations are multiplied by the data-dependent attention
coefficients. This means, for example, that if one of the attention coefficients is
close to zero for a particular choice of input vector, the resulting signal path will
ignore the corresponding incoming signal, which will therefore have no influence

N x D, N x N N x D,
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normalization of the argument to the

Y
g X A
softmax using +/Dx. This structure
constitutes a single attention ‘head’.

on the network outputs. By contrast, if a standard neural network learns to ignore a
particular input or hidden-unit variable, it does so for all input vectors.

12.1.5 Scaled self-attention

There is one final refinement we can make to the self-attention layer. Recall that
the gradients of the softmax function become exponentially small for inputs of high
magnitude, just as happens with tanh or logistic-sigmoid activation functions. To
help prevent this from happening, we can re-scale the product of the query and key
vectors before applying the softmax function. To derive a suitable scaling, note that
if the elements of the query and key vectors were all independent random numbers
with zero mean and unit variance, then the variance of the dot product would be D,.
We therefore normalize the argument to the softmax using the standard deviation
given by the square root of Dy, so that the output of the attention layer takes the
form

. QKT]
Y = Attention(Q, K, V) = Softmax { V. (12.14)
QY VD

This is called scaled dot-product self-attention, and is the final form of our self-

attention neural network layer. The structure of this layer is summarized in Fig-
ure 12.6 and in Algorithm 12.1.

12.1.6 Multi-head attention

The attention layer described so far allows the output vectors to attend to data-
dependent patterns of input vectors and is called an attention head. However, there
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Algorithm 12.1: Scaled dot-product self-attention

Input: Set of tokens X € RV*D : {x,, ..., xx}
Weight matrices {W (@ W} € RPXPx and W) ¢ RP*Pv
Output: Attention(Q,K,V) € RV*Pv . {y, ... yn}
Q= Xw@ // compute queries Q & RNV*Px
K=Xw® // compute keys K € RV*Dxk
V=XW® // compute values V € RN*P
KT
} v
vV Dy

return Attention(Q, K, V) = Softmax

might be multiple patterns of attention that are relevant at the same time. In natu-
ral language, for example, some patterns might be relevant to tense whereas others
might be associated with vocabulary. Using a single attention head can lead to av-
eraging over these effects. Instead we can use multiple attention heads in parallel.
These consist of identically structured copies of the single head, with independent
learnable parameters that govern the calculation of the query, key, and value matri-
ces. This is analogous to using multiple different filters in each layer of a convolu-
tional network.
Suppose we have H heads indexed by h = 1, ..., H of the form

H, = Attention(Qh,Kh,Vh) (12.15)

where Attention(-, -, -) is given by (12.14), and we have defined separate query, key,
and value matrices for each head using

Qn = XW'9 (12.16)
K, = XW" (12.17)
V), = XW. (12.18)

The heads are first concatenated into a single matrix, and the result is then linearly
transformed using a matrix W(°) to give a combined output in the form

Y (X) = Concat [Hy,..., Hy] W©), (12.19)

This is illustrated in Figure 12.7.

Each matrix H;, has dimension N x D,, and so the concatenated matrix has
dimension N x HD,. This is transformed by the linear matrix W () of dimension
HD, x D to give the final output matrix Y of dimension N x D, which is the same
as the original input matrix X. The elements of the matrix W(°) are learned during
the training phase along with the query, key, and value matrices. Typically D, is
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dimensionality. N x HD, NxD
HD, x D

chosen to be equal to D/H so that the resulting concatenated matrix has dimension
N x D. Multi-head attention is summarized in Algorithm 12.2, and the information
flow in a multi-head attention layer is illustrated in Figure 12.8.

Note that the formulation of multi-head attention given above, which follows
that used in the research literature, includes some redundancy in the successive mul-
tiplication of the W () matrix for each head and the output matrix W(®), Removing
this redundancy allows a multi-head self-attention layer to be written as a sum over
contributions from each of the heads separately.

12.1.7 Transformer layers

Multi-head self-attention forms the core architectural element in a transformer
network. We know that neural networks benefit greatly from depth, and so we would
like to stack multiple self-attention layers on top of each other. To improve training

Algorithm 12.2: Multi-head attention

Input: Set of tokens X € RV*P : {x, ... . xx}
Query weight matrices {W'", ... W{¥} € RD*D
Key weight matrices {W{®, ... W} ¢ RD*D
Value weight matrices {W{", ... 7WE;I’)} € RPxDv
Output weight matrix W(®) ¢ RHDvxD

Output: Y € RV*DP : [y, . xy}

// compute self-attention for each head (Algorithm 12.1)
forh=1,...,H do
Q,=XW K,=xwW¥ v,=xw
H,, = Attention (Qp, Ky, Vy) // H, € RV*Pv
end for
H = Concat [H,,...,HN] // concatenate heads
return Y (X) = HW©
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Information flow in a multi-head attention layer. The associated computation, given by
Algorithm 12.2, is illustrated in Figure 12.7.

efficiency, we can introduce residual connections that bypass the multi-head struc-
ture. To do this we require that the output dimensionality is the same as the input
dimensionality, namely /N x D. This is then followed by layer normalization (Ba,
Kiros, and Hinton, 2016), which improves training efficiency. The resulting trans-
formation can be written as

Z = LayerNorm [Y (X)) + X] (12.20)

where Y is defined by (12.19). Sometimes the layer normalization is replaced by
pre-norm in which the normalization layer is applied before the multi-head self-
attention instead of after, as this can result in more effective optimization, in which
case we have

Z=Y(X')+X, where X'=LayerNorm [X]. (12.21)

In each case, Z again has the same dimensionality N x D as the input matrix X.
We have seen that the attention mechanism creates linear combinations of the
value vectors, which are then linearly combined to produce the output vectors. Also,
the values are linear functions of the input vectors, and so we see that the outputs
of an attention layer are constrained to be linear combinations of the inputs. Non-
linearity does enter through the attention weights, and so the outputs will depend
nonlinearly on the inputs via the softmax function, but the output vectors are still
constrained to lie in the subspace spanned by the input vectors and this limits the
expressive capabilities of the attention layer. We can enhance the flexibility of the
transformer by post-processing the output of each layer using a standard nonlinear
neural network with D inputs and D outputs, denoted MLP[-] for ‘multilayer per-
ceptron’. For example, this might consist of a two-layer fully connected network
with ReLU hidden units. This needs to be done in a way that preserves the ability
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Figure 12.9 One layer of the transformer architecture that ~

implements the transformation (12.1). Here X
‘MLP’ stands for multilayer perceptron, while

‘add and norm’ denotes a residual connection add & norm 1=
followed by layer normalization.

multi-head
self-attention

of the transformer to process sequences of variable length. To achieve this, the same
shared network is applied to each of the output vectors, corresponding to the rows of
Z. Again, this neural network layer can be improved by using a residual connection.
It also includes layer normalization so that the final output from the transformer layer
has the form B

X = LayerNorm [MLP [Z] + Z] . (12.22)

This leads to an overall architecture for a transformer layer shown in Figure 12.9 and
summarized in Algorithm 12.3. Again, we can use a pre-norm instead, in which case
the final output is given by

X = MLP(Z') + Z, where Z' = LayerNorm [Z]. (12.23)

In a typical transformer there are multiple such layers stacked on top of each other.
The layers generally have identical structures, although there is no sharing of weights
and biases between different layers.

12.1.8 Computational complexity

The attention layer discussed so far takes a set of IV vectors each of length
D and maps them into another set of /N vectors having the same dimensionality.
Thus, the inputs and outputs each have overall dimensionality N D. If we had used a
standard fully connected neural network to map the input values to the output values,
it would have O(N?D?) independent parameters. Likewise the computational cost
of evaluating one forward pass through such a network would also be O(N?D?).

In the attention layer, the matrices W@, W® and WO are shared across in-
put tokens, and therefore the number of independent parameters is O(D?), assuming
Dy ~ D, ~ D. Since there are N input tokens, the number of computational steps
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Algorithm 12.3: Transformer layer

Input: Set of tokens X € RV*D : Ix, ... xx}

Multi-head self-attention layer parameters

Feed-forward network parameters
Output: X € RV*D . {%,, ..., Xy}
Z = LayerNorm [Y(X) + X] // Y(X) from Algorithm 12.2
X = LayerNorm [MLP [Z] + Z] // shared neural network
return X

in evaluating the dot products in a self-attention layer is O(N?D). We can think
of a self-attention layer as a sparse matrix in which parameters are shared between
specific blocks of the matrix. The subsequent neural network layer, which has D
inputs and D outputs, has a cost that is O(D?). Since it is shared across tokens, it
has a complexity that is linear in NV, and therefore overall this layer has a cost that is
O(N D?). Depending on the relative sizes of N and D, either the transformer layer
or the MLP layer may dominate the computational cost. Compared to a fully con-
nected network, a transformer layer is computationally more efficient. Many vari-
ants of the transformer architecture have been proposed (Lin et al., 2021; Phuong
and Hutter, 2022) including modifications aimed at improving efficiency (Tay et al.,
2020).

12.1.9 Positional encoding

In the transformer architecture, the matrices W;Lq), W;Lk), and Wév) are shared
across the input tokens, as is the subsequent neural network. As a consequence, the
transformer has the property that permuting the order of the input tokens, i.e., the

rows of X, results in the same permutation of the rows of the output matrix X. In
other words a transformer is equivariant with respect to input permutations. The
sharing of parameters in the network architecture facilitates the massively parallel
processing of the transformer, and also allows the network to learn long-range de-
pendencies just as effectively as short-range dependencies. However, the lack of
dependence on token order becomes a major limitation when we consider sequential
data, such as the words in a natural language, because the representation learned by
a transformer will be independent of the input token ordering. The two sentences
‘The food was bad, not good at all.” and ‘The food was good, not bad at all.’” con-
tain the same tokens but they have very different meanings because of the different
token ordering. Clearly token order is crucial for most sequential processing tasks
including natural language processing, and so we need to find a way to inject token
order information into the network.

Since we wish to retain the powerful properties of the attention layers that we
have carefully constructed, we aim to encode the token order in the data itself in-
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stead of having to be represented in the network architecture. We will therefore
construct a position encoding vector r,, associated with each input position n and
then combine this with the associated input token embedding x,,. One obvious way
to combine these vectors would be to concatenate them, but this would increase the
dimensionality of the input space and hence of all subsequent attention spaces, cre-
ating a significant increase in computational cost. Instead, we can simply add the
position vectors onto the token vectors to give

X = Xp -+ T'p. (12.24)

This requires that the positional encoding vectors have the same dimensionality as
the token-embedding vectors.

At first it might seem that adding position information onto the token vector
would corrupt the input vectors and make the task of the network much more diffi-
cult. However, some intuition as to why this can work well comes from noting that
two randomly chosen uncorrelated vectors tend to be nearly orthogonal in spaces of
high dimensionality, indicating that the network is able to process the token identity
information and the position information relatively separately. Note also that, be-
cause of the residual connections across every layer, the position information does
not get lost in going from one transformer layer to the next. Moreover, due to the
linear processing layers in the transformer, a concatenated representation has similar
properties to an additive one.

The next task is to construct the embedding vectors {r,,}. A simple approach
would be to associate an integer 1, 2, 3, . . . with each position. However, this has the
problem that the magnitude of the value increases without bound and therefore may
start to corrupt the embedding vector significantly. Also it may not generalize well
to new input sequences that are longer than those used in training, since these will
involve coding values that lie outside the range of those used in training. Alterna-
tively we could assign a number in the range (0, 1) to each token in the sequence,
which keeps the representation bounded. However, this representation is not unique
for a given position as it depends on the overall sequence length.

An ideal positional encoding should provide a unique representation for each
position, it should be bounded, it should generalize to longer sequences, and it should
have a consistent way to express the number of steps between any two input vectors
irrespective of their absolute position because the relative position of tokens is often
more important than the absolute position.

There are many approaches to positional encoding (Dufter, Schmitt, and Schiitze,
2021). Here we describe a technique based on sinusoidal functions introduced by
Vaswani et al. (2017). For a given position n the associated position-encoding vec-
tor has components 7,,; given by

sin (L’%) , if 7 is even,
Tni = n (12.25)
COS (W) s if 7 is odd.

We see that the elements of the embedding vector r,, are given by a series of sine and
cosine functions of steadily increasing wavelength, as illustrated in Figure 12.10(a).
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Figure 12.10 lllustrations of the functions defined by (12.25) and used to construct position-encoding vectors.
(a) A plot in which the horizontal axis shows the different components of the embedding vector r whereas the
vertical axis shows the position in the sequence. The values of the vector elements for two positions n and m are
shown by the intersections of the sine and cosine curves with the horizontal grey lines. (b) A heat map illustration
of the position-encoding vectors defined by (12.25) for dimension D = 100 with L = 30 for the first N = 200

positions.
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This encoding has the property that the elements of the vector r,, all lie in the
range (—1,1). It is reminiscent of the way binary numbers are represented, with the
lowest order bit alternating with high frequency, and subsequent bits alternating with
steadily decreasing frequencies:
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For the encoding given by (12.25), however, the vector elements are continuous
variables rather than binary. A plot of the position-encoding vectors is shown in
Figure 12.10(b).

One nice property of the sinusoidal representation given by (12.25) is that, for
any fixed offset k, the encoding at position n + k can be represented as a linear
combination of the encoding at position n, in which the coefficients do not depend
on the absolute position but only on the value of k. The network should therefore be
able to learn to attend to relative positions. Note that this property requires that the
encoding makes use of both sine and cosine functions.

Another popular approach to positional representation is to use learned position
encodings. This is done by having a vector of weights at each token position that
can be learned jointly with the rest of the model parameters during training, and
avoids using hand-crafted representations. Because the parameters are not shared
between the token positions, the tokens are no longer invariant under a permutation,
which is the purpose of a positional encoding. However, this approach does not
meet the criteria we mentioned earlier of generalizing to longer input sequences,
as the encoding will be untrained for positional encodings not seen during training.
Therefore, this approach is generally most suitable when the input length is relatively
constant during both training and inference.

Natural Language

Section 12.4

Now that we have studied the architecture of the transformer, we will explore how
this can be used to process language data consisting of words, sentences, and para-
graphs. Although this is the modality that transformers were originally developed to
operate on, they have proved to be a very general class of models and have become
the state-of-the-art for most input data types. Later in this chapter we will look at
their use in other domains.

Many languages, including English, comprise a series of words separated by
white space, along with punctuation symbols, and therefore represent an example of
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sequential data. For the moment we will focus on the words, and we will return to
punctuation later.

The first challenge is to convert the words into a numerical representation that
is suitable for use as the input to a deep neural network. One simple approach is to
define a fixed dictionary of words and then introduce vectors of length equal to the
size of the dictionary along with a ‘one hot’ representation for each word, in which
the kth word in the dictionary is encoded with a vector having a 1 in position £ and
0 in all other positions. For example if ‘aardwolf” is the third word in our dictionary
then its vector representation would be (0,0,1,0,...,0).

An obvious problem with a one-hot representation is that a realistic dictionary
might have several hundred thousand entries leading to vectors of very high dimen-
sionality. Also, it does not capture any similarities or relationships that might exist
between words. Both issues can be addressed by mapping the words into a lower-
dimensional space through a process called word embedding in which each word is
represented as a dense vector in a space of typically a few hundred dimensions.

12.2.1 Word embedding

The embedding process can be defined by a matrix E of size D x K where
D is the dimensionality of the embedding space and K is the dimensionality of the
dictionary. For each one-hot encoded input vector x,, we can then calculate the
corresponding embedding vector using

Because x,, has a one-hot encoding, the vector v,, is simply given by the correspond-
ing column of the matrix E.

We can learn the matrix E from a corpus (i.e., a large data set) of text, and
there are many approaches to doing this. Here we look at a popular technique called
word2vec (Mikolov et al., 2013), which can be viewed as a simple two-layer neural
network. A training set is constructed in which each sample is obtained by consid-
ering a ‘window’ of M adjacent words in the text, where a typical value might be
M = 5. The samples are considered to be independent, and the error function is de-
fined as the sum of the error functions for each sample. There are two variants of this
approach. In continuous bag of words, the target variable for network training is the
middle word, and the remaining context words form the inputs, so that the network
is being trained to ‘fill in the blank’. A closely related approach, called skip-grams,
reverses the inputs and outputs, so that the centre word is presented as the input and
the target values are the context words. These models are illustrated in Figure 12.11.

This training procedure can be viewed as a form of self-supervised learning since
the data consists simply of a large corpus of unlabelled text from which many small
windows of word sequences are drawn at random. Labels are obtained from the text
itself by ‘masking’ out those words whose values the network is trying to predict.

Once the model is trained, the embedding matrix E is given by the transpose
of the second-layer weight matrix for the continuous bag-of-words approach and
by the first-layer weight matrix for skip-grams. Words that are semantically related
are mapped to nearby positions in the embedding space. This is to be expected
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Two-layer neural networks used to learn word embeddings, where (a) shows the continuous

bag-of-words approach, and (b) shows the skip-grams approach.

since related words are more likely to occur with similar context words compared
to unrelated words. For example, the words ‘city’ and ‘capital’ might occur with
higher frequency as context for target words such as ‘Paris’ or ‘London’ and less
frequently as context for ‘orange’ or ‘polynomial’. The network can more easily
predict the probability of the missing words if ‘Paris’ and ‘London’ are mapped to
nearby embedding vectors.

It turns out that the learned embedding space often has an even richer semantic
structure than just the proximity of related words, and that this allows for simple
vector arithmetic. For example, the concept that ‘Paris is to France as Rome is to
Italy’ can be expressed through operations on the embedding vectors. If we use
v(word) to denote the embedding vector for ‘word’, then we find

v(Paris) — v(France) 4+ v(Italy) ~ v(Rome). (12.27)

Word embeddings were originally developed as natural language processing
tools in their own right. Today, they are more likely to be used as pre-processing
steps for deep neural networks. In this regard they can be viewed as the first layer
in a deep neural network. They can be fixed using some standard pre-trained em-
bedding matrix, or they can be treated as an adaptive layer that is learned as part of
the overall end-to-end training of the system. In the latter case the embedding layer
can be initialized either using random weight values or using a standard embedding
matrix.



Figure 12.12 An illustration of the process of
tokenizing natural language by analogy with byte
pair encoding. In this example, the most fre-
quently occurring pair of characters is ‘pe’, which
occurs four times, and so these form a new to-
ken that replaces all the occurrences of ‘pe’.
Note that ‘Pe’ is not included in this since upper-
case ‘P’ and lower-case ‘p’ are distinct charac-
ters. Next the pair ‘ck’ is added since this occurs
three times. This is followed by tokens such as
‘pi’, ‘ed’, and ‘per’, all of which occur twice, and
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Peter Piper picked a peck of pickled peppers
Peter Piper picked a peck of pickled peppers
Peter Piper picked a peck of pickled peppers
Peter Piper picked a peck of pickled peppers
Peter Piper picked a peck of pickled peppers

Peter Pi picked a peck of pickled peppers

SO on.

Section 12.4.1

12.2.2 Tokenization

One problem with using a fixed dictionary of words is that it cannot cope with
words not in the dictionary or which are misspelled. It also does not take account
of punctuation symbols or other character sequences such as computer code. An
alternative approach that addresses these problems would be to work at the level of
characters instead of using words, so that our dictionary comprises upper-case and
lower-case letters, numbers, punctuation, and white-space symbols such as spaces
and tabs. A disadvantage of this approach, however, is that it discards the semanti-
cally important word structure of language, and the subsequent neural network would
have to learn to reassemble words from elementary characters. It would also require
a much larger number of sequential steps for a given body of text, thereby increasing
the computational cost of processing the sequence.

We can combine the benefits of character-level and word-level representations
by using a pre-processing step that converts a string of words and punctuation sym-
bols into a string of fokens, which are generally small groups of characters and might
include common words in their entirety, along with fragments of longer words as
well as individual characters that can be assembled into less common words (Schus-
ter and Nakajima, 2012). This tokenization also allows the system to process other
kinds of sequences such as computer code or even other modalities such as images.
It also means that variations of the same word can have related representations. For
example, ‘cook’, ‘cooks’, ‘cooked’, ‘cooking’, and ‘cooker’ are all related and share
the common element ‘cook’, which itself could be represented as one of the tokens.

There are many approaches to tokenization. As an example, a technique called
byte pair encoding that is used for data compression, can be adapted to text tokeniza-
tion by merging characters instead of bytes (Sennrich, Haddow, and Birch, 2015).
The process starts with the individual characters and iteratively merges them into
longer strings. The list of tokens is first initialized with the list of individual char-
acters. Then a body of text is searched for the most frequently occurring adjacent
pairs of tokens and these are replaced with a new token. To ensure that words are not
merged, a new token is not formed from two tokens if the second token starts with a
white space. The process is repeated iteratively as illustrated in Figure 12.12.

Initially the number of tokens is equal to the number of characters, which is
relatively small. As tokens are formed, the total number of tokens increases, and
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if this is continued long enough, the tokens will eventually correspond to the set of
words in the text. The total number of tokens is generally fixed in advance, as a
compromise between character-level and word-level representations. The algorithm
is stopped when this number of tokens is reached.

In practical applications of deep learning to natural language, the input text is
typically first mapped into a tokenized representation. However, for the remainder of
this chapter, we will use word-level representations as this makes it easier to illustrate
and motivate key concepts.

12.2.3 Bag of words

We now turn to the task of modelling the joint distribution p(xy, ...,xy) of an
ordered sequence of vectors, such as words (or tokens) in a natural language. The
simplest approach is to assume that the words are drawn independently from the
same distribution and hence that the joint distribution is fully factorized in the form

p(X1,...,XN) = H p(Xn). (12.28)

This can be expressed as a probabilistic graphical model in which the nodes are
isolated with no interconnecting links.

The distribution p(x) is shared across the variables and can be represented, with-
out loss of generality, as a simple table listing the probabilities of each of the possi-
ble states of x (corresponding to the dictionary of words or tokens). The maximum
likelihood solution for this model is obtained simply by setting each of these proba-
bilities to the fraction of times that the word occurs in the training set. This is known
as a bag-of-words model because it completely ignores the ordering of the words.

We can use the bag-of-words approach to construct a simple text classifier. This
could be used for example in sentiment analysis in which a passage of text represent-
ing a restaurant review is to be classified as positive or negative. The naive Bayes
classifier assumes that the words are independent within each class Cy, but with a
different distribution for each class, so that

N
p(x1,- ., xn[C) = [ p(xnlCr). (12.29)
n=1

Given prior class probabilities p(Cy,), the posterior class probabilities for a new se-
quence are given by:

N
p(Crlx1, ..., xn) < p(Cr) H (%n|Ch). (12.30)

Both the class-conditional densities p(x|Cy) and the prior probabilities p(Ci) can
be estimated using frequencies from the training data set. For a new sequence, the
table entries are multiplied together to get the desired posterior probabilities. Note
that if a word occurs in the test set that was not present in the training set then the
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corresponding probability estimate will be zero, and so these estimates are typically
‘smoothed’ after training by reassigning a small level of probability uniformly across
all entries to avoid zero values.

12.2.4 Autoregressive models

One obvious major limitation of the bag-of-words model is that it completely
ignores word order. To address this we can take an autoregressive approach. Without
loss of generality we can decompose the distribution over the sequence of words into
a product of conditional distributions in the form

N
P(Xyy.. ., XN) = Hp(xn|xl,...,xn_1). (12.31)
n=1

This can be represented as a probabilistic graphical model in which each node in the
sequence receives a link from every previous node. We could represent each term
on the right-hand side of (12.31) by a table whose entries are once again estimated
using simple frequency counts from the training set. However, the size of these
tables grows exponentially with the length of the sequence, and so this approach
would become prohibitively expensive.

We can simplify the model dramatically by assuming that each of the condi-
tional distributions on the right-hand side of (12.31) is independent of all previous
observations except the L most recent words. For example, if L = 2 then the joint
distribution for a sequence of [V observations under this model is given by

N
P(X1,...,XN) = p(x1)p(Xa|x1) H P(Xp |Xn—1,Xn—2). (12.32)

n=3

In the corresponding graphical model each node has links from the two previous
nodes. Here we assume that the conditional distributions p(x,,|x,,—1) are shared
across all variables. Again each of the distributions on the right-hand side of (12.32)
can be represented as tables whose values are estimated from the statistics of triplets
of successive words drawn from a training corpus.

The case with L = 1 is known as a bi-gram model because it depends on pairs
of adjacent words. Similarly L = 2, which involves triplets of adjacent words, is
called a tri-gram model, and in general these are called n-gram models.

All the models discussed so far in this section can be run generatively to synthe-
size novel text. For example, if we provide the first and second words in a sequence,
then we can sample from the tri-gram statistics p(X, |X,—1,Xn,—2) to generate the
third word, and then we can use the second and third words to sample the fourth
word, and so on. The resulting text, however, will be incoherent because each word
is predicted only on the basis of the two previous words. High-quality text models
must take account of the long-range dependencies in language. On the other hand,
we cannot simply increase the value of L because the size of the probability tables
grows exponentially in L so that it is prohibitively expensive to go much beyond
tri-gram models. However, the autoregressive representation will play a central role
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when we consider modern language models based not on probability tables but on
deep neural networks configured as transformers.

One way to allow longer-range dependencies, while avoiding the exponential
growth in the number of parameters of an n-gram model, is to use a hidden Markov
model whose graphical structure is shown in Figure 11.31. The number of learn-
able parameters is governed by the dimensionality of the latent variables whereas
the distribution over a given observation x,, depends, in principle, on all previous
observations. However, the influence of more distant observations is still very lim-
ited since their effect must be carried through the chain of latent states which are
themselves being updated by more recent observations.

12.2.5 Recurrent neural networks

Techniques such as n-grams have very poor scaling with sequence length be-
cause they store completely general tables of conditional distributions. We can
achieve much better scaling by using parameterized models based on neural net-
works. Suppose we simply apply a standard feed-forward neural network to se-
quences of words in natural language. One problem that arises is that the network
has a fixed number of inputs and outputs, whereas we need to be able to handle se-
quences in the training and test sets that have variable length. Furthermore, if a word,
or group of words, at a particular location in a sequence represents some concept then
the same word, or group of words, at a different location is likely to represent the
same concept at that new location. This is reminiscent of the equivariance property
we encountered in processing image data. If we can construct a network architecture
that is able to share parameters across the sequence then not only can we capture this
equivariance property but we can greatly reduce the number of free parameters in
the model as well as handle sequences having different lengths.

To address this we can borrow inspiration from the hidden Markov model and
introduce an explicit hidden variable z,, associated with each step n in the sequence.
The neural network takes as input both the current word x,, and the current hidden
state z,,—; and produces an output word y,, as well as the next state z,, of the hidden
variable. We can then chain together copies of this network, in which the weight
values are shared across the copies. The resulting architecture is called a recurrent
neural network (RNN) and is illustrated in Figure 12.13. Here the initial value of
the hidden state may be initialized for example to some default value such as zy =
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Figure 12.14 An example of a recurrent neural network used for language translation. See the text for details.
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(0,0,...,0)T.

As an example of how an RNN might be used in practice, consider the spe-
cific task of translating sentences from English into Dutch. The sentences can have
variable length, and each output sentence might have a different length from the cor-
responding input sentence. Furthermore, the network may need to see the whole of
the input sentence before it can even start to generate the output sentence. We can
address this using an RNN by feeding in the complete English sentence followed by
a special input token, which we denote by (start), to trigger the start of translation.
During training the network learns to associate (start) with the beginning of the
output sentence. We also take each successively generated word and feed it into the
input at the next time step, as shown in Figure 12.14. The network can be trained
to generate a specific (stop) token to signify the completion of the translation. The
first few stages of the network are used to absorb the input sequence, and the associ-
ated output vectors are simply ignored. This part of the network can be viewed as an
‘encoder’ in which the entire input sentence has been compressed into the state z* of
the hidden variable. The remaining network stages function as the ‘decoder’, which
generates the translated sentence as output one word at a time. Notice that each out-
put word is fed as input to the next stage of the network, and so this approach has an
autoregressive structure analogous to (12.31).

12.2.6 Backpropagation through time

RNNSs can be trained by stochastic gradient descent using gradients calculated
by backpropagation and evaluated through automatic differentiation, just as with reg-
ular neural networks. The error function consists of a sum over all output units of
the error for each unit, in which each output unit has a softmax activation function
along with an associated cross-entropy error function. During forward propagation,
the activation values are propagated all the way from the first input in the sequence
through to all the output nodes in the sequence, and error signals are then backprop-
agated along the same paths. This process is called backpropagation through time
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and in principle is straightforward. However, in practice, for very long sequences,
training can be difficult due to the problems of vanishing gradients or exploding
gradients that arise with very deep network architectures.

Another problem with standard RNNs is that they deal poorly with long-range
dependencies. This is especially problematic for natural language where such depen-
dencies are widespread. In a long passage of text, a concept might be introduced that
plays an important role in predicting words occurring much later in the text. In the
architecture shown in Figure 12.14, the entire concept of the English sentence must
be captured in the single hidden vector z* of fixed length, and this becomes increas-
ingly problematic with longer sequences. This is known as the bottleneck problem
because a sequence of arbitrary length has to be summarized in a single hidden vec-
tor of activations and the network can start to generate the output translation only
once the full input sequence has been processed.

One approach for addressing both the vanishing and exploding gradients prob-
lems and the limited long-range dependencies is to modify the architecture of the
neural network to allow additional signal paths that bypass many of the processing
steps within each stage of the network and hence allow information to be remem-
bered over a larger number of time steps. Long short-term memory (LSTM) models
(Hochreiter and Schmidhuber, 1997) and gated recurrent unit (GRU) models (Cho et
al.,2014) are the most widely known examples. Although they improve performance
compared to standard RNNss, they still have a limited ability to model long-range de-
pendencies. Also, the additional complexity of each cell means that LSTMs are even
slower to train than standard RNNs. Furthermore, all recurrent networks have signal
paths that grow linearly with the number of steps in the sequence. Moreover, they do
not support parallel computation within a single training example due to the sequen-
tial nature of the processing. In particular, this means that RNNs struggle to make
efficient use of modern highly parallel hardware based on GPUs. These problems
are addressed by replacing RNNs with transformers.

Transformer Language Models

The transformer processing layer is a highly flexible component for building pow-
erful neural network models with broad applicability. In this section we explore the
application of transformers to natural language. This has given rise to the develop-
ment of massive neural networks known as large language models (LLMs), which
have proven to be exceptionally capable (Zhao et al., 2023).

Transformers can be applied to many different kinds of language processing
task, and can be grouped into three categories according to the form of the input
and output data. In a problem such as sentiment analysis, we take a sequence of
words as input and provide a single variable representing the sentiment of the text,
for example happy or sad, as output. Here a transformer is acting as an ‘encoder’
of the sequence. Other problems might take a single vector as input and generate
a word sequence as output, for example if we wish to generate a text caption given
an input image. In such cases the transformer functions as a ‘decoder’, generating
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a sequence as output. Finally, in sequence-to-sequence processing tasks, both the
input and the output comprise a sequence of words, for example if our goal is to
translate from one language to another. In this case, transformers are used in both
encoder and decoder roles. We discuss each of these classes of language model in
turn, using illustrative examples of model architectures.

12.3.1 Decoder transformers

We start by considering decoder-only transformer models. These can be used as
generative models that create output sequences of tokens. As an illustrative example,
we will focus on a class of models called GPT which stands for generative pre-
trained transformer (Radford et al., 2019; Brown et al., 2020; OpenAl, 2023). The
goal is to use the transformer architecture to construct an autoregressive model of the
form defined by (12.31) in which the conditional distributions p(x,,|x1, ..., Xn—1)
are expressed using a transformer neural network that is learned from data.

The model takes as input a sequence consisting of the first n — 1 tokens, and
its corresponding output represents the conditional distribution for token n. If we
draw a sample from this distribution then we have extended the sequence to n tokens
and this new sequence can be fed back through the model to give a distribution over
token n + 1, and so on. The process can be repeated to generate sequences up to
a maximum length determined by the number of inputs to the transformer. We will
shortly discuss strategies for sampling from the conditional distributions, but for the
moment we focus on how to construct and train the network.

The architecture of a GPT model consists of a stack of transformer layers that
take a sequence xy, ..., Xy of tokens, each of dimensionality D, as input and pro-
duce a sequence X, ..., Xy of tokens, again of dimensionality D, as output. Each
output needs to represent a probability distribution over the dictionary of tokens at
that time step, and this dictionary has dimensionality K whereas the tokens have a
dimensionality of D. We therefore make a linear transformation of each output to-
ken using a matrix W (®) of dimensionality D x K followed by a softmax activation
function in the form

Y = Softmax (XW) (12.33)

where Y is a matrix whose nth row is y, and X is a matrix whose nth row is
xTF. Each softmax output unit has an associated cross-entropy error function. The
architecture of the model is shown in Figure 12.15.

The model can be trained using a large corpus of unlabelled natural language
by taking a self-supervised approach. Each training sample consists of a sequence
of tokens xy, .. ., X,,, which form the input to the network, along with an associated
target value x,41 consisting of the next token in the sequence. The sequences are
considered to be independent and identically distributed so that the error function
used for training is the sum of the cross-entropy error values summed over the train-
ing set, grouped into appropriate mini-batches. Naively we could process each such
training sample independently using a forward pass through the model. However,
we can achieve much greater efficiency by processing an entire sequence at once so
that each token acts both as a target value for the sequence of previous tokens and as
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Figure 12.15 Architecture of a GPT decoder transformer network. Here ‘LSM’ stands for linear-softmax and
denotes a linear transformation whose learnable parameters are shared across the token positions, followed by
a softmax activation function. Masking is explained in the text.

an input value for subsequent tokens. For example, consider the word sequence
| swam across the river to get to the other bank.

We can use ‘| swam across’ as an input sequence with an associated target of ‘the’,
and also use ‘|l swam across the’ as an input sequence with an associated target of
‘river’, and so on. However, to process these in parallel we have to ensure that the
network is not able to ‘cheat’ by looking ahead in the sequence, otherwise it will
simply learn to copy the next input directly to the output. If it did this, it would
then be unable to generate new sequences since the subsequent token by definition is
not available at test time. To address this problem we do two things. First, we shift
the input sequence to the right by one step, so that input x,, corresponds to output
Yni1, With target x,, .1, and an additional special token denoted (start) is pre-
pended in the first position of the input sequence. Second, note that the tokens in a
transformer are processed independently, except when they are used to compute the
attention weights, when they interact in pairs through the dot product. We therefore
introduce masked attention, sometimes called causal attention, into each of the at-
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Figure 12.16 An illustration of the mask matrix
for masked self-attention. Atten-
tion weights corresponding to the
red elements are set to zero. Thus,
in predicting the token ‘across’, swam
the output can depend only on 2
the input tokens ‘(start>' ‘" and 8_ across
‘swam’. 5
o
the
river
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tention layers, in which we set to zero all of the attention weights that correspond to
a token attending to any later token in the sequence. This simply involves setting to
zero all the corresponding elements of the attention matrix Attention(Q, K, V') de-
fined by (12.14) and then normalizing the remaining elements so that each row once
again sums to one. In practice, this can be achieved by setting the corresponding
pre-activation values to —oo so that the softmax evaluates to zero for the associated
outputs and also takes care of the normalization across the non-zero outputs. The
structure of the masked attention matrix is illustrated in Figure 12.16.

In practice, we wish to make efficient use of the massive parallelism of GPUs,
and hence multiple sequences may be stacked together into an input tensor for par-
allel processing in a single batch. However, this requires the sequences to be of the
same length, whereas text sequences naturally have variable length. This can be ad-
dressed by introducing a specific token, which we denote by (pad), that is used to
fill unused positions to bring all sequences up to the same length so that they can
be combined into a single tensor. An additional mask is then used in the attention
weights to ensure that the output vectors do not pay attention to any inputs occupied
by the (pad) token. Note that the form of this mask depends on the particular input
sequence.

The output of the trained model is a probability distribution over the space of
tokens, given by the softmax output activation function, which represents the prob-
ability of the next token given the current token sequence. Once this next word is
chosen, the token sequence with the new token included can then be fed through the
model again to generate the subsequent token in the sequence, and this process can
be repeated indefinitely or until an end-of-sequence token is generated. This may ap-
pear to be quite inefficient since data must be fed through the whole model for each
new generated token. However, note that due to the masked attention, the embedding
learned for a particular token depends only on that token itself and on earlier tokens
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and hence does not change when a new, later token is generated. Consequently, much
of the computation can be recycled when processing a new token.

12.3.2 Sampling strategies

We have seen that the output of a decoder transformer is a probability distribu-
tion over values for the next token in the sequence, from which a particular value
for that token must be chosen to extend the sequence. There are several options for
selecting the value of the token based on the computed probabilities (Holtzman et
al., 2019). One obvious approach, called greedy search, is simply to select the token
with the highest probability. This has the effect of making the model deterministic,
in that a given input sequence always generates the same output sequence. Note that
simply choosing the highest probability token at each stage is not the same as select-
ing the highest probability sequence of tokens. To find the most probable sequence,
we would need to maximize the joint distribution over all tokens, which is given by

N
p(yla"'ayN): Hp(yn|y17"'7Y’rL—1)' (1234)

n=1

If there are IV steps in the sequence and the number of token values in the dictionary
is K then the total number of sequences is O(K V), which grows exponentially with
the length of the sequence, and hence finding the single most probable sequence is
infeasible. By comparison, greedy search has cost O(K N), which is linear in the
sequence length.

One technique that has the potential to generate higher probability sequences
than greedy search is called beam search. Instead of choosing the single most proba-
ble token value at each step, we maintain a set of B hypotheses, where B is called the
beam width, each consisting of a sequence of token values up to step n. We then feed
all these sequences through the network, and for each sequence we find the B most
probable token values, thereby creating B? possible hypotheses for the extended
sequence. This list is then pruned by selecting the most probable B hypotheses ac-
cording to the total probability of the extended sequence. Thus, the beam search
algorithm maintains B alternative sequences and keeps track of their probabilities,
finally selecting the most probable sequence amongst those considered. Because the
probability of a sequence is obtained by multiplying the probabilities at each step of
the sequence and since these probability are always less than or equal to one, a long
sequence will generally have a lower probability than a short one, biasing the results
towards short sequences. For this reason the sequence probabilities are generally
normalized by the corresponding lengths of the sequence before making compar-
isons. Beam search has cost O( BK N), which is again linear in the sequence length.
However, the cost of generating a sequence is increased by a factor of B, and so for
very large language models, where the cost of inference can become significant, this
makes beam search much less attractive.

One problem with approaches such as greedy search and beam search is that they
limit the diversity of potential outputs and can even cause the generation process to
become stuck in a loop, where the same sub-sequence of words is repeated over and
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Figure 12.17 A comparison of the token probabilities from beam search and human text for a given trained
transformer language model and a given initial input sequence, showing how the human sequence has much
lower token probabilities. [From Holtzman et al. (2019) with permission.]

over. As can be seen in Figure 12.17, human-generated text may have lower proba-
bility and hence be more surprising with respect to a given model than automatically
generated text.

Instead of trying to find a sequence with the highest probability, we can instead
generate successive tokens simply by sampling from the softmax distribution at each
step. However, this can lead to sequences that are nonsensical. This arises from
the typically very large size of the token dictionary, in which there is a long tail of
many token states each of which has a very small probability but which in aggregate
account for a significant fraction of the total probability mass. This leads to the
problem in which there is a significant chance that the system will make a bad choice
for the next token.

As a balance between these extremes, we can consider only the states having the
top K probabilities, for some choice of K, and then sample from these according to
their renormalized probabilities. A variant of this approach, called top-p sampling
or nucleus sampling, calculates the cumulative probability of the top outputs until a
threshold is reached and then samples from this restricted set of token states.

A ‘softer’ version of top-K sampling is to introduce a parameter 1" called fem-
perature into the definition of the softmax function (Hinton, Vinyals, and Dean,

2015) so that
exp(a;/T)
Y= (12.35)
>_;exp(a;/T)
and then sample the next token from this modified distribution. When 7" = 0, the

probability mass is concentrated on the most probable state, with all other states
having zero probability, and hence this becomes greedy selection. For T" = 1, we
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recover the unmodified softmax distribution, and as T' — oo, the distribution be-
comes uniform across all states. By choosing a value in the range 0 < T" < 1, the
probability is concentrated towards the higher values.

One challenge with sequence generation is that during the learning phase, the
model is trained on a human-generated input sequence, whereas when it is running
generatively, the input sequence is itself generated from the model. This means that
the model can drift away from the distribution of sequences seen during training.

12.3.3 Encoder transformers

We next consider transformer language models based on encoders, which are
models that take sequences as input and produce fixed-length vectors, such as class
labels, as output. An example of such a model is BERT, which stands for bidirec-
tional encoder representations from transformers (Devlin et al., 2018). The goal is
to pre-train a language model using a large corpus of text and then to fine-tune the
model using transfer learning for a broad range of downstream tasks each of which
requires a smaller application-specific training data set. The architecture of an en-
coder transformer is illustrated in Figure 12.18. This approach is a straightforward
application of the transformer layers discussed previously.

The first token of every input string is given by a special token (class), and the
corresponding output of the model is ignored during pre-training. Its role will be-
come apparent when we discuss fine-tuning. The model is pre-trained by presenting
token sequences at the input. A randomly chosen subset of the tokens, say 15%, are
replaced with a special token denoted (mask). The model is trained to predict the
missing tokens at the corresponding output nodes. This is analogous to the masking
used in word2vec to learn word embeddings. For example, an input sequence might
be

| (mask) across the river to get to the (mask) bank.

and the network should predict ‘swam’ at output node 2 and ‘other’ at output node
10. In this case only two of the outputs contribute to the error function and the other
outputs are ignored.

The term ‘bidirectional’ refers to the fact that the network sees words both be-
fore and after the masked word and can use both sources of information to make a
prediction. As a consequence, unlike decoder models, there is no need to shift the
inputs to the right by one place, and there is no need to mask the outputs of each layer
from seeing input tokens occurring later in the sequence. Compared to the decoder
model, an encoder is less efficient since only a fraction of the sequence tokens are
used as training labels. Moreover, an encoder model is unable to generate sequences.

The procedure of replacing randomly selected tokens with (mask) means the
training set has a mismatch compared to subsequent fine-tuning sets in that the lat-
ter will not contain any (mask) tokens. To mitigate any problems this might cause,
Devlin et al. (2018) modified the procedure slightly, so that of the 15% of randomly
selected tokens, 80% are replaced with (mask), 10% are replaced with a word se-
lected at random from the vocabulary, and in 10% of the cases, the original words
are retained at the input, but they still have to be correctly predicted at the output.
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Figure 12.18 Architecture of an encoder transformer model. The boxes labelled ‘LSM’ denote a linear trans-
formation whose learnable parameters are shared across the token positions, followed by a softmax activation
function. The main differences compared to the decoder model are that the input sequence is not shifted to the
right, and the ‘look ahead’ masking matrix is omitted and therefore, within each self-attention layer, every output

token can attend to any of the input tokens.

Once the encoder model is trained it can then be fine-tuned for a variety of
different tasks. To do this a new output layer is constructed whose form is specific
to the task being solved. For a text classification task, only the first output position
is used, which corresponds to the (class) token that always appears in the first
position of the input sequence. If this output has dimension D then a matrix of
parameters of dimension D X K, where K is the number of classes, is appended to
the first output node and this in turn feeds into a K -dimensional softmax function
or a vector of dimension D x 1 followed by a logistic sigmoid for K = 2. The
linear output transformation could alternatively be replaced with a more complex
differentiable model such as an MLP. If the goal is to classify each token of the
input string, for example to assign each token to a category (such as person, place,
colour, etc) then the first output is ignored and the subsequent outputs have a shared
linear-plus-softmax layer. During fine-tuning all model parameters including the
new output matrix are learned by stochastic gradient descent using the log probability
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of the correct label. Alternatively the output of a pre-trained model might feed into a
sophisticated generative deep learning model for applications such as text-to-image
synthesis.

12.3.4 Sequence-to-sequence transformers

For completeness, we discuss briefly the third category of transformer model,
which combines an encoder with a decoder, as discussed in the original transformer
paper of Vaswani et al. (2017). Consider the task of translating an English sentence
into a Dutch sentence. We can use a decoder model to generate the token sequence
corresponding to the Dutch output, token by token, as discussed previously. The
main difference is that this output needs to be conditioned on the entire input se-
quence corresponding to the English sentence. An encoder transformer can be used
to map the input token sequence into a suitable internal representation, which we
denote by Z. To incorporate Z into the generative process for the output sequence,
we use a modified form of the attention mechanism called cross attention. This is the
same as self-attention except that although the query vectors come from the sequence
being generated, in this case the Dutch output sequence, the key and value vectors
come from the sequence represented by Z, as illustrated in Figure 12.19. Returning
to our analogy with a video streaming service, this would be like the user sending
their query vector to a different streaming company who then compares it with their
own set of key vectors to find the best match and then returns the associated value
vector in the form of a movie.

When we combine the encoder and decoder modules, we obtain the architecture
of the model shown in Figure 12.20. The model can be trained using paired input
and output sentences.

12.3.5 Large language models

The most important recent development in the field of machine learning has
been the creation of very large transformer-based neural networks for natural lan-
guage processing, known as large language models or LLMs. Here ‘large’ refers to
the number of weight and bias parameters in the network, which can number up to
around one trillion (10*?) at the time of writing. Such models are expensive to train,
and the motivation for building them comes from their extraordinary capabilities.

In addition to the availability of large data sets, the training of ever larger mod-
els has been facilitated by the advent of massively parallel training hardware based
on GPUs (graphics processing units) and similar processors tightly coupled in large
clusters equipped fast interconnect and lots of onboard memory. The transformer
architecture has played a key role in the development of these models because it is
able to make very efficient use of such hardware. Very often, increasing the size of
the training data set, along with a commensurate increase in the number of model pa-
rameters, leads to improvements in performance that outpace architectural improve-
ments or other ways to incorporate more domain knowledge (Sutton, 2019; Kaplan
et al., 2020). For example, the impressive increase in performance of the GPT se-
ries of models (Radford et al., 2019; Brown et al., 2020; OpenAl, 2023) through
successive generations has come primarily from an increase in scale. These kinds
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of performance improvements have driven a new kind of Moore’s law in which the
number of compute operations required to train a state-of-the-art machine learning
model has grown exponentially since about 2012 with a doubling time of around 3.4
months.

Early language models were trained using supervised learning. For example, to
build a translation system, the training set would consist of matched pairs of sen-
tences in two languages. A major limitation of supervised learning, however, is
that the data typically has to be human-curated to provide labelled examples, and
this severely limits the quantity of data available, thereby requiring heavy use of
inductive biases such as feature engineering and architecture constraints to achieve
reasonable performance.

Large language models are trained instead by self-supervised learning on very
large data sets of text, along with potentially other token sequences such as computer
code. We have seen how a decoder transformer can be trained on token sequences
in which each token acts as a labelled target example, with the preceding sequence
as input, to learn a conditional probability distribution. This ‘self-labelling’ hugely
expands the quantity of training data available and therefore allows exploitation of
deep neural networks having large numbers of parameters.
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Figure 12.20 Schematic illustration of a sequence-to-sequence transformer. To keep the diagram uncluttered
the input tokens are collectively shown as a single box, and likewise for the output tokens. Positional-encoding
vectors are added to the input tokens for both the encoder and decoder sections. Each layer in the encoder
corresponds to the structure shown in Figure 12.9, and each cross-attention layer is of the form shown in Fig-
ure 12.19.

This use of self-supervised learning led to a paradigm shift in which a large
model is first pre-trained using unlabelled data and then subsequently fine-tuned
using supervised learning based on a much smaller set of labelled data. This is
effectively a form of transfer learning, and the same pre-trained model can be used
for multiple ‘downstream’ applications. A model with broad capabilities that can be
subsequently fine-tuned for specific tasks is called a foundation model (Bommasani
etal.,2021).

The fine-tuning can be done by adding extra layers to the outputs of the network
or by replacing the last few layers with fresh parameters and then using the labelled
data to train these final layers. During the fine-tuning stage, the weights and biases
in the main model can either be left unchanged or be allowed to undergo small levels
of adaptation. Typically the cost of the fine-tuning is small compared to that of pre-
training.

One very efficient approach to fine-tuning is called low-rank adaptation or LORA
(Hu et al., 2021). This approach is inspired by results which show that a trained over-
parameterized model has a low intrinsic dimensionality with respect to fine-tuning,
meaning that changes in the model parameters during fine-tuning lie on a manifold
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Schematic illustration low-rank adaptation showing a weight matrix Wy from one of the
attention layers in a pre-trained transformer. Additional weights given by matrices A and
B are adapted during fine-tuning and their product AB is then added to the original matrix
for subsequent inference.

whose dimensionality is much smaller than the total number of learnable parameters
in the model (Aghajanyan, Zettlemoyer, and Gupta, 2020). LoRa exploits this by
freezing the weights of the original model and adding additional learnable weight
matrices into each layer of the transformer in the form of low-rank products. Typi-
cally only attention-layer weights are modified, whereas MLP-layer weights are kept
fixed. Consider a weight matrix W having dimension D x D, which might rep-
resent a query, key, or value matrix in which the matrices from multiple attention
heads are treated together as a single matrix. We introduce a parallel set of weights
defined by the product of two matrices A and B with dimensions D x R and R x D,
respectively, as shown schematically in Figure 12.21. This layer then generates an
output given by XW, + X AB. The number of parameters in the additional weight
matrix AB is 2RD compared to the D? parameters in the original weight matrix
W, and so if R < D then the number of parameters that need to be adapted during
fine-tuning is much smaller than the number in the original transformer. In prac-
tice, this can reduce the number of parameters that need to be trained by a factor of
10,000. Once the fine-tuning is complete, the additional weights can be added to the
original weight matrices to give a new weight matrix

W =W, + AB (12.36)

so that during inference there is no additional computational overhead compared to
running the original model since the updated model has the same size as the original.
As language models have become larger and more powerful, the need for fine-
tuning has diminished, with generative language models now able to solve a broad
range of tasks simply through text-based interaction. For example, if a text string

English: the cat sat on the mat. French:

is given as the input sequence, an autoregressive language model can continue to gen-
erate subsequent tokens until a (stop) token is generated, in which the newly gen-



394

12. TRANSFORMERS

12.4.

erated tokens represent the French translation. Note that the model was not trained
specifically to do translation but has learned to do so as a result of being trained on a
vast corpus of data that includes multiple languages.

A user can interact with such models using a natural language dialogue, mak-
ing them very accessible to broad audiences. To improve the user experience and
the quality of the generated outputs, techniques have been developed for fine-tuning
large language models through human evaluation of generated output, using methods
such as reinforcement learning through human feedback or RLHF (Christiano et al.,
2017). Such techniques have helped to create large language models with impres-
sively easy-to-use conversational interfaces, most notably the system from OpenAl
called ChatGPT.

The sequence of input tokens given by the user is called a prompt. For example,
it might consist of the opening words of a story, which the model is required to com-
plete. Or it might comprise a question, and the model should provide the answer. By
using different prompts, the same trained neural network may be capable of solving a
broad range of tasks such as generating computer code from a simple text request or
writing rhyming poetry on demand. The performance of the model now depends on
the form of the prompt, leading to a new field called prompt engineering (Liu et al.,
2021), which aims to design a good form for a prompt that results in high-quality
output for the downstream task. The behaviour of the model can also be modified by
adapting the user’s prompt before feeding it into the language model by pre-pending
an additional token sequence called a prefix prompt to the user prompt to modify
the form of the output. For example, the pre-prompt might consist of instructions,
expressed in standard English, to tell the network not to include offensive language
in its output.

This allows the model to solve new tasks simply by providing some examples
within the prompt, without needing to adapt the parameters of the model. This is an
example of few-shot learning.

Current state-of-the-art models such as GPT-4 have become so powerful that
they are exhibiting remarkable properties which have been described as the first in-
dications of artificial general intelligence (Bubeck et al., 2023) and are driving a
new wave of technological innovation. Moreover, the capabilities of these models
continue to improve at an impressive pace.

Multimodal Transformers

Chapter 10

Although transformers were initially developed as an alternative to recurrent net-
works for processing sequential language data, they have become prevalent in nearly
all areas of deep learning. They have proved to be general-purpose models, as they
make very few assumptions about the input data, in contrast, for example, to convo-
lutional networks, which make strong assumptions about equivariances and locality.
Due to their generality, transformers have become the state-of-the-art for many dif-
ferent modalities, including text, image, video, point cloud, and audio data, and have
been used for both discriminative and generative applications within each of these
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domains. The core architecture of the transformer layer has remained relatively con-
stant, both over time and across applications. Therefore, the key innovations that
enabled the use of transformers in areas other than natural language have largely
focused on the representation and encoding of the inputs and outputs.

One big advantage of a single architecture that is capable of processing many
different kinds of data is that it makes multimodal computation relatively straight-
forward. In this context, multimodal refers to applications that combine two or more
different types of of data, either in the inputs or outputs or both. For example, we
may wish to generate an image from a text prompt or design a robot that can com-
bine information from multiple sensors such as cameras, radar, and microphones.
The important thing to note is that if we can tokenize the inputs and decode the
output tokens, then it is likely that we can use a transformer.

12.4.1 Vision transformers

Transformers have been applied with great success to computer vision and have
achieved state-of-the-art performance on many tasks. The most common choice for
discriminative tasks is a standard transformer encoder, and this approach in the vi-
sion domain is known as a vision transformer, or ViT (Dosovitskiy et al., 2020).
When using a transformer, we need to decide how to convert an input image into
tokens, and the simplest choice is to use each pixel as a token, following a linear
projection. However, the memory required by a standard transformer implementa-
tion grows quadratically with the number of input tokens, and so this approach is
generally infeasible. Instead, the most common approach to tokenization is to split
the image into a set of patches of the same size. Suppose the images have dimension
x € RIXWXC where H and W are the height and width of the image in pixels
and C' is the number of channels (where typically C' = 3 for R, G, and B colours).
Each image is split into non-overlapping patches of size P x P (where P = 16 is
a common choice) and then ‘flattened’ into a one-dimensional vector, which gives a
representation x,, € RV *(P*0) where N = H W/ P? is the total number of patches
for one image. The ViT architecture is shown in Figure 12.22.

Another approach to tokenization is to feed the image through a small convolu-
tional neural network (CNN). This can down-sample the image to give a manageable
number of tokens each represented by one of the network outputs. For example a typ-
ical ResNet18 encoder architecture down-samples an image by a factor of 8 in both
the height and width dimensions, giving 64 times fewer tokens than pixels.

We also need a way to encode positional information in the tokens. It is pos-
sible to construct explicit positional embeddings that encode the two-dimensional
positional information of the image patches, but in practice this does not generally
improve performance, and so it is most common to just use learned positional em-
beddings. In contrast to the transformers used for natural language, vision trans-
formers generally take a fixed number of tokens as input, which avoids the problem
of learned positional encodings not generalizing to inputs of a different size.

A vision transformer has a very different architectural design compared to a
CNN. Although strong inductive biases are baked into a CNN model, the only two-
dimensional inductive bias in a vision transformer is due to the patches used to tok-
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Figure 12.22 lllustration of the vision transformer architecture for a classification task. Here a learnable (class)
token is included as an additional input, and the associated output is transformed by a linear layer with a softmax
activation, denoted by LSM, to give the final class-vector output c.

Section 11.1.2

enize the input. A transformer therefore generally requires more training data than a
comparable CNN as it has to learn the geometrical properties of images from scratch.
However, because there are no strong assumptions about the structure of the inputs,
transformers are often able to converge to a higher accuracy. This provides another
illustration of the trade-off between inductive bias and the scale of the training data
(Sutton, 2019).

12.4.2 Generative image transformers

In the language domain, the most impressive results have come when trans-
formers are used as an autoregressive generative model for synthesizing text. It is
therefore natural to ask whether we can also use transformers to synthesize realistic
images. Since natural language is inherently sequential, it fits neatly into the au-
toregressive framework, whereas images have no natural ordering of their pixels so
that it is not as intuitive that decoding them autoregressively would be useful. How-
ever, any distribution can be decomposed into a product of conditionals, provided we
first define some ordering of the variables. Thus, the joint distribution over ordered
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variables X1, ..., Xy can be written
N
p(xl""va): Hp(xn|xlv'°'7xn71)° (1237)
n=1

This factorization is completely general and makes no restrictions on the form of the
individual conditional distributions p(x,|Xx1, ..., X,—1)-

For an image we can choose x,, to represent the nth pixel as a three-dimensional
vector of the RGB values. We now need to decide on an ordering for the pixels, and
one widely used choice is called a raster scan as illustrated in Figure 12.23. A
schematic illustration of an image being generated using an autoregressive model,
based on a raster-scan ordering, is shown in Figure 12.24.

Note that the use of autoregressive generative models of images predates the
introduction of transformers. For example, Pixel CNN (Oord et al., 2016) and Pixel-
RNN (Oord, Kalchbrenner, and Kavukcuoglu, 2016) used bespoke masked convolu-
tion layers that preserve the conditional independence defined for each pixel by the
corresponding term on the right-hand side of 12.37.

Representations of an image using continuous values can work well in discrim-
inative tasks. However, much better results are obtained for image generation by
using discrete representations. Continuous conditional distributions learned by max-
imum likelihood, such as Gaussians for which the negative log likelihood function
is a sum-of-squares error function, tend to learn averages of the training data, lead-
ing to blurry images. Conversely, discrete distributions can handle multimodality
with ease. For example, one of the conditional distributions p(x,|x1,...,X,—1) in

e

Figure 12.24 An illustration of how an image can be sampled from an autoregressive model. The first pixel is
sampled from the marginal distribution p(x11), the second pixel from the conditional distribution p(x12|x11), and
so0 on in raster scan order until we have a complete image.



398 12. TRANSFORMERS

Section 15.1.1

Section 15.1

Section 6.3.3

(12.37) might learn that a pixel could be either black or white, whereas a regression
model might learn that the pixel should be grey.

However, working with discrete spaces also brings its challenges. The R, G, and
B values of image pixels are typically represented with at least 8 bits of precision,
so that each pixel has 224 ~ 16M possible values. Learning a conditional softmax
distribution over a such a high-dimensional space is infeasible.

One way to address the problem of the high dimensionality is to use the tech-
nique of vector quantization, which can be viewed as a form of data compression.
Suppose we have a set of data vectors xy, ..., xy each of dimensionality D, which
might, for example, represent image pixels, and we then introduce a set of K code-
book vectors C = cq,...,ck also of dimensionality D, where typically K < D.
We now approximate each data vector by its nearest codebook vector according to
some similarity metric, usually Euclidean distance, so that

X, — argmin ||x,, — ci|[%. (12.38)
cpEeC

Since there are K codebook vectors, we can represent each x,, by a one-hot encoded
K -dimensional vector, and since we can choose the value of K, we can control the
trade-off between more accurate representation of the data, by using a larger value
of K, or greater compression, by using a smaller value of K.

We can therefore take the original image pixels and map them into the lower-
dimensional codebook space. An autoregressive transformer can then be trained to
generate a sequence of codebook vectors, and this sequence can be mapped back into
the original image space by replacing each codebook index k with the corresponding
D-dimensional codebook vector cy.

Autoregressive transformers were first applied to images in ImageGPT (Chen,
Radford, et al., 2020). Here each pixel is treated as one of a discrete set of three-
dimensional colour codebook vectors, each corresponding to a cluster in a K -means
clustering of the colour space. A one-hot encoding therefore gives discrete tokens,
analogous to language tokens, and allows the transformer to be trained in the same
way as language models, with a next-token classification objective. This is a power-
ful objective for representation learning for subsequent fine-tuning, again in a similar
way to language modelling.

Using the individual pixels as tokens directly, however, can lead to high com-
putational cost since a forward pass is required per pixel, which means that both
training and inference scale poorly with image resolution. Also, using individual
pixels as inputs means that low-resolution images have to be used to give a reason-
able context length when decoding the pixels later in the raster scan. As we saw with
the ViT model, it is preferable to use patches of the image as tokens instead of pixels,
as this can result in dramatically fewer tokens and therefore facilitates working with
higher-resolution images. As before, we need to work with a discrete space of token
values due to the potential multimodality of the conditional distributions. Again, this
raises the challenge of dimensionality, which is now much more severe with patches
than with individual pixels since the dimensionality is exponential with respect to
the number of pixels in the patch. For example, even with just two possible pixel
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Figure 12.25 An example mel spectrogram of a humpback whale song. [Source data copyright ©2013—
2023, librosa development team.]

tokens, representing black and white, and patches of size 16 x 16, we would have a
dictionary of patch tokens of size 2256 ~ 1077,

Once again we turn to vector quantization to address the challenge of dimension-
ality. The codebook vectors can be learned from a data set of image patches using
simple clustering algorithms such as /K-means or with more sophisticated meth-
ods such as fully convolutional networks (Oord, Vinyals, and Kavukcuoglu, 2017;
Esser, Rombach, and Ommer, 2020) or even vision transformers (Yu et al., 2021).
One problem with learning to map each patch to a discrete set of codes and back
again, is that vector quantization is a non-differentiable operation. Fortunately we
can use a technique called straight-through gradient estimation (Bengio, Léonard,
and Courville, 2013), which is a simple approximation that just copies the gradients
through the non-differentiable function during backpropagation.

The use of autoregressive transformers to generate images can be extended to
videos by treating a video as one long sequence of these vector-quantized tokens
(Rakhimov et al., 2020; Yan et al., 2021; Hu et al., 2023).

12.4.3 Audio data

We next look at the application of transformers to audio data. Sound is gener-
ally stored as a waveform obtained by measuring the amplitude of the air pressure
at regular time intervals. Although this waveform could be used directly as input to
a deep learning model, in practice it is more effective to pre-process it into a mel
spectrogram. This is a matrix whose columns represent time steps and whose rows
correspond to frequencies. The frequency bands follow a standard convention that
was chosen through subjective assessment to give equal perceptual differences be-
tween successive frequencies (the word ‘mel’ comes from melody). An example of
a mel spectrogram is shown in Figure 12.25.

One application for transformers in the audio domain is classification in which
segments of audio are assigned to one of a number of predefined categories. For
example, the AudioSet data set (Gemmeke et al., 2017) is a widely used benchmark.
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It contains classes such as ‘car’, ‘animal’, and ‘laughter’. Until the development of
the transformer, the state-of-the-art approach for audio classification was based on
mel spectrograms treated as images and used as the input to a convolutional neural
network (CNN). However, although a CNN is good at understanding local relation-
ships, one drawback is that it struggles with longer-range dependencies, which can
be important in processing audio.

Just as transformers replaced RNNs as the state-of-the-art in natural language
processing, they have also come to replace CNNs for tasks such as audio classifica-
tion. For example, a transformer encoder model of identical structure to that used
for both language and vision, as shown in Figure 12.18, can be used to predict the
class of audio inputs (Gong, Chung, and Glass, 2021). Here the mel spectrogram
is viewed as an image which is then tokenized. This is done by splitting the image
into patches in a similar way to vision transformers, possibly with some overlap so
as not to lose any important neighbourhood relations. Each patch is then flattened,
meaning it is converted to a one-dimensional array, in this case of length 256. A
unique positional encoding is then added to each token, a specific (class) token is
appended, and the tokens are then fed through the transformer encoder. The output
token corresponding to the {class) input token from the last transformer layer can
then be decoded using a linear layer followed by a softmax activation function, and
the whole model can be trained end-to-end using a cross-entropy loss.

12.4.4 Text-to-speech

Classification is not the only task that deep learning, and more specifically the
transformer architecture, has revolutionized in the audio domain. The success of
transformers at synthesizing speech that imitates the voice of a given speaker is an-
other demonstration of their versatility, and their application to this task is an infor-
mative case study in how to apply transformers in a new context.

Generating speech corresponding to a given passage of text is known as fext-
to-speech synthesis. A more traditional approach would be to collect recordings
of speech from a given speaker and train a supervised regression model to predict
the speech output, possibly in the form of a mel spectrogram, from corresponding
transcribed text. During inference, the text for which we would like to synthesize
speech is presented as input and the resulting mel spectrogram output can then be
decoded back to an audio waveform since this is a fixed mapping.

This approach has a few major drawbacks, however. First, if we predict speech
at a low level, for example using sub-word components known as phonemes, a
larger context is needed to make the resulting sentences sound fluid. However, if we
predict longer segments, then the space of possible inputs grows significantly, and an
infeasible amount of training data might be required to achieve good generalization.
Second, this approach does not transfer knowledge across speakers, and so a lot of
data will be required for each new speaker. Finally, the problem is really a generative
modelling task, as there are multiple correct speech outputs for a given speaker and
text pair, so regression may not be suitable since it tends to average over target values.

If instead we treat audio data in the same way as natural language and frame
text-to-speech as a conditional language modelling task, then we should be able to
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Figure 12.26 A diagram showing the high-level architecture of Vall-E. The input to the transformer model con-
sists of standard text tokens, which prompt the model as to what words the synthesized speech should contain,
together with acoustic prompt tokens that determine the speaker style and tone information. The sampled model
output tokens are decoded back to speech with the learned decoder. For simplicity, the positional encodings and
linear projections are not shown.

Section 12.4.2

train the model in much the same way as with text-based large language models.
There are two main implementation details that need to be addressed. The first is
how to tokenize the training data and decode the predictions, and the second is how
to condition the model on the speaker’s voice.

One approach to text-to-speech synthesis that makes use of transformers and lan-
guage modelling techniques is Vall-E (Wang et al., 2023). New text can be mapped
into speech in the voice of a new speaker using only a few seconds of sample speech
from that person. Speech data is converted into a sequence of discrete tokens from
a learned dictionary or codebook obtained using vector quantization, and we can
think of these tokens as analogous to the one-hot encoded tokens from the natural
language domain. The input consists of text tokens from a passage of text whereas
the target outputs for training consist of the corresponding speech tokens. Additional
speech tokens from a short segment of unrelated speech from the same speaker are
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appended to the input text tokens, as illustrated in Figure 12.26. By including exam-
ples from many different speakers, the system can learn to read out a passage of text
while imitating the voice represented by the additional speech input tokens. Once
trained the system can be presented with new text, along with audio tokens from a
brief segment of speech captured from a new speaker, and the resulting output tokens
can be decoded, using the same codebook used during training, to create a speech
waveform. This allows the system to synthesize speech corresponding to the input
text in the voice of the new speaker.

12.4.5 Vision and language transformers

We have seen how to generate discrete tokens for text, audio, and images, and so
it is a natural next step to ask if we can train a model with input tokens of one modal-
ity and output tokens of another, or whether we can have a combination of different
modalities for either inputs or outputs or both. We will focus on the combination
of text and vision data as this is the most widely studied example, but in principle
the approaches discussed here could be applied to other combinations of input and
output modalities.

The first requirement is that we have a large data set for training. The LAION-
400M data set (Schuhmann et al., 2021) has greatly accelerated research in text-to-
image generation and image-to-text captioning in much the same way that ImageNet
was critical in the development of deep image classification models. Text-to-image
generation is actually much like the unconditional image generation we have looked
at so far, except that we also allow the model to take as input the text information to
condition the generation process. This is straightforward when using transformers as
we can simply provide the text tokens as additional input when decoding each image
token.

This approach can also be viewed as treating the text-to-image problem as a
sequence-to-sequence language modelling problem, such as machine translation, ex-
cept that the target tokens are discrete image tokens rather than language tokens. It
therefore makes sense to choose a full encoder-decoder transformer model, as shown
in Figure 12.20, in which X corresponds to the input text tokens and Y corresponds
to the output image tokens. This is the approach taken in a model called Parti (Yu et
al., 2022) in which the transformer is scaled to 20 billion parameters while showing
consistent performance improvements with increasing model size.

A lot of research has also been done on using pre-trained language models,
and modifying or fine-tuning them so that they can also accept visual data as in-
put (Alayrac et al., 2022; Li et al., 2022). These approaches largely use bespoke
architectures, along with continuous-valued image tokens, and therefore are not nat-
ural fits for also generating visual data. Moreover, they cannot be used directly if we
wish to include new modalities such as audio tokens. Although this is a step towards
multimodality, we would ideally like to use both text and image tokens as both input
and output. The simplest approach is to treat everything as a sequence of tokens as
if this were natural language but with a dictionary that is the concatenation of a lan-
guage token dictionary and the image token codebook. We can then treat any stream
of audio and visual data as simply a sequence of tokens.
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Figure 12.27 Examples of the CM3Leon model performing a variety of different tasks in the joint space of text
and images. [From (Yu et al., 2023) with permission.]

In CM3 (Aghajanyan et al., 2022) and CM3Leon (Yu et al., 2023), a variation of
language modelling is used to train on HTML documents containing both image and
text data taken from online sources. When this large quantity of training data was
combined with a scalable architecture, the models became very powerful. Moreover,
the multimodal nature of the training means that the models are very flexible. Such
models are capable of completing many tasks that otherwise might require task-
specific model architectures and training regimes, such as text-to-image generation,
image-to-text captioning, image editing, text completion, and many more, including
anything a regular language model is capable of. Examples of the CM3Leon model
completing instances of a few different tasks are shown in Figure 12.27.

Exercises
12.1

(x %) Consider a set of coefficients a,,, form = 1,..., N, with the properties that

Qnm 2 0

Zanm =1.

(12.39)
(12.40)
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12.2

12.3

12.4

12.5

12.6

12.7

12.8

By using a Lagrange multiplier show that the coefficients must also satisfy

anm <1 for n=1,...,N. (12.41)

(%) Verify that the softmax function (12.5) satisfies the constraints (12.3) and (12.4)
for any values of the vectors x1,...,Xxy.

(%) Consider the input vectors x,, in the simple transformation defined by (12.2), in
which the weighting coefficients a,,,, are defined by (12.5). Show that if all the input
vectors are orthogonal, so that x) x,,, = 0 for n # m, then the output vectors will
simply be equal to the input vectors so thaty,, = x,, forn =1,..., N.

(x) Consider two independent random vectors a and b each of dimension D and
each being drawn from a Gaussian distribution with zero mean and unit variance
N (-|0,T). Show that the expected value of (a™b)? is given by D.

(% * x) Show that multi-head attention defined by (12.19) can be rewritten in the form

H
Y = Z H,XW" (12.42)
h=1

where Hj, is given by (12.15) and we have defined
W = wiIwe), (12.43)

Here we have partitioned the matrix W(°) horizontally into sub-matrices denoted
Wgo) each of dimension D, x D, corresponding to the vertical segments of the
concatenated attention matrix. Since D, is typically smaller than D, for example
D, = D/H is a common choice, this combined matrix is rank deficient. Therefore,

using a fully flexible matrix to replace WéV)Wg’) would not be equivalent to the
original formulation given in the text.

(x %) Express the self-attention function (12.14) as a fully connected network in the
form of a matrix that maps the full input sequence of concatenated word vectors
into an output vector of the same dimension. Note that such a matrix would have
O(N?D?) parameters. Show that the self-attention network corresponds to a sparse
version of this matrix with parameter sharing. Draw a sketch showing the structure
of this matrix, indicating which blocks of parameters are shared and which blocks
have all elements equal to zero.

(x) Show that if we omit the positional encoding of input vectors then the outputs
of a multi-head attention layer defined by (12.19) are equivariant with respect to a
reordering of the input sequence.

(%% x) Consider two D-dimensional unit vectors a and b, satisfying ||a|| = 1 and
|b|| = 1, drawn from a random distribution. Assume that the distribution is sym-
metrical around the origin, i.e., it depends only on the distance from the origin and
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not the direction. Show that for large values of D the magnitude of the cosine of the
angle between these vectors is close to zero and hence that these random vectors are
nearly orthogonal in a high-dimensional space. To do this, consider an orthonormal
basis set {u;} where u]u; = §;; and express a and b as expansions in this basis.
(xx) Consider a position encoding in which the input token vector x is concatenated
with a position-encoding vector e. Show that when this concatenated vector under-
goes a general linear transformation by multiplication using a matrix, the result can
be expressed as the sum of a linearly transformed input and a linearly transformed
position vector.

(xx) Show that the positional encoding defined by (12.25) has the property that,
for a fixed offset k, the encoding at position n + k can be represented as a linear
combination of the encoding at position n with coefficients that depend only on &
and not on n. To do this make use of the following trigonometric identities:

cos(A+ B) = cos Acos B —sin Asin B (12.44)
sin(A + B) = cos Asin B + sin A cos B. (12.45)

Show that if the encoding is based purely on sine functions, without cosine functions,
then this property no longer holds.

(x) Consider the bag-of-words model (12.28) in which each of the component distri-
butions p(x,,) is given by a general probability table that is shared across all words.
Show that the maximum likelihood solution, given a training set of vectors, is given
by a table whose entries are the fractions of times each word occurs in the training
set.

(x) Consider the autoregressive language model given by (12.31) and suppose that
the terms p(x,|Xi,...,X,—1) on the right-hand side are represented by general
probability tables. Show that the number of entries in these tables grows exponen-
tially with the value of n.

(*) When using n-grams it is usual to train the n-gram and (n — 1)-gram models at
the same time and then compute the conditional probability using the product rule of
probability in the form

pL(Xn—L-i-la e 7xn)

pL—l(Xn—L+17 soe 7Xn—1)

P(Xn|Xn—La1y -y Xp—1) = (12.46)

Explain why this is more convenient than storing the left-hand-side directly, and
show that to obtain the correct probabilities the final token from each sequence must
be omitted when evaluating pr,_1 (- - - ).

(x %) Write down pseudo-code for the inference process in a trained RNN with an
architecture of the form depicted in Figure 12.13.

(xx) Consider a sequence of two tokens y; and y- each of which can take the states
A or B. The table below shows the joint probability distribution p(y;, y2):
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12.16

|
o
I
Sy

Y1 Y1

I
S

Y2 0.0 0.4

Il
S

Yo 0.1 0.25

We see that the most probable sequence is y; = B, y» = B and that this has prob-
ability 0.4. Using the sum and product rules of probability, write down the values
of the marginal distribution p(y;) and the conditional distribution p(y2|y1). Show
that if we first maximize p(y;) to give a value 37 and then subsequently maximize
p(y2|yT) then we obtain a sequence that is different from the overall most probable
sequence. Find the probability of the sequence.

(x) The BERT-Large model (Devlin et al., 2018) has a maximum input length of 512
tokens, each of dimensionality D = 1,024 and taken from a vocabulary of 30,000. It
has 24 transformer layers each with 16 self-attention heads with Dy = Dy = D, =
64, and the MLP position-wise networks have two layers with 4,096 hidden nodes.
Show that the total number of parameters in the BERT encoder transformer language
model is approximately 340 million.
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