
Evidential Kolmogorov-Arnold Networks
Transfer Learning Using Dempster–Shafer Layers

Alejandro Veloz Rodrigo Pizarro

ConvNets for image classification

CNN = Convolutional Neural Networks = ConvNet

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition.

2

ConvNets for image classification
The model always outputs the class it was trained on (cat, with confidence

0.81).

3

Outline

1. Dempster-Shafer theory

2. Kolmogorov-Arnold Networks (KAN)

3. Evidential KAN

4. Preliminary results

4

Uncertainty
Lack of knowledge about a system or process.

Random uncertainty:

Represents intrinsic variation.

Can be reduced adding more data.

Can be addressed by Bayesian learning.

Epistemic uncertainty:

Represents the lack of knowledge.

Can be reduced by acquiring more knowledge or training better

models.

Can be addressed by Dempster-Shafer theory.

5

Mass functions

Let Ω = {𝜔1, … , 𝜔𝑀} be a finite set of states called the

frame of discernment.

Let 2Ω be the set of all subsets of Ω, that is,

2Ω = {𝐴 ∶ 𝐴 ⊆ Ω}.

A mass function is a function 𝑚 ∶ 2Ω → [0, 1] such that

𝑚(∅) = 0, ∑
𝐴⊆Ω

𝑚(𝐴) = 1.

6

Mass functions - example

Let 𝑋 be the type of object in a region of an image and

Ω = {G, R, T,O, S} the possible classes corresponding to

grass, road, tree, obstacle, and sky.

7

Mass functions - example

Suppose a radar provides the information that 𝑋 ∈ {T,O},
but there is a probability 𝑝 = 0.1 that the information is

unreliable.

7

Mass functions - example

Note that the probability 𝑝 does not provide information

about 𝑋, but rather about the sensor.

Let 𝑆 = {working, faulty} denote the possible states of the

sensor.

If the sensor is working, then 𝑋 ∈ {T,O}.
If the sensor is faulty, then 𝑋 ∈ Ω and nothing else can

be determined.

8

Mass functions - example

This uncertainty in the information can be represented by the

following mass function 𝑚 over Ω:

𝑚({T,O}) = 0.9, 𝑚(Ω) = 0.1

We can conclude that:

𝑚({T,O}) is the probability of only knowing that
𝑋 ∈ {T,O} and nothing more.

𝑚(Ω) is the probability of knowing nothing at all.
9

Belief and Plausibility Functions

Given a mass function 𝑚 and a subset 𝐴 ⊆ Ω.

The total belief of 𝐴, Bel ∶ 2Ω → [0, 1], is:

Bel(𝐴) = ∑
𝐸⊆𝐴,𝐸≠∅

𝑚(𝐸).

The plausibility of 𝐴, Pl ∶ 2Ω → [0, 1], is:

Pl(𝐴) = ∑
𝐸∩𝐴≠∅

𝑚(𝐸) = 1 − Bel(̄𝐴).

10

Belief and Plausibility Functions - example

Based on the previous example, it follows that:

Ω = {G, R, T,O, S}, 𝑚({T,O}) = 0.9, 𝑚(Ω) = 0.1

Belief and plausibility values of some subsets of Ω:

𝐴 ∅ {T} {O} {T,O} {T,O, R} {T, R} {R, S} Ω
Bel(𝐴) 0 0 0 0.9 0.9 0 0 1

Pl(𝐴) 0 1 1 1 1 1 0.1 1

11

Dempster’s Combination Rule

Suppose that 𝑚1 and 𝑚2 are mass functions over Ω.

The combined function 𝑚 ∶ 2Ω → [0, 1] defined by and

𝑚(𝐴) = (𝑚1 ⊕ 𝑚2)(𝐴) = 1
1 − 𝜅

∑
𝐵∩𝐶=𝐴

𝑚1(𝐵)𝑚2(𝐶),

where

𝜅 ∶= ∑
𝐵∩𝐶=∅

𝑚1(𝐵)𝑚2(𝐶) < 1,

is a valid mass function.

12

Kolmogorov–Arnold representation theorem (1957)

Any multivariate continuous function can be represented (or

decomposed) as a finite superposition of continuous

univariate functions.

For any smooth function 𝑓 ∶ ℝ𝑛 → ℝ,

𝑓(𝐱) = 𝑓 (𝑥1, … , 𝑥𝑛) =
2𝑛+1

∑
𝑞=1

Φ𝑞 (
𝑛

∑
𝑝=1

𝜙𝑞,𝑝 (𝑥𝑝)) ,

where 𝜙𝑞,𝑝 ∶ [0, 1] → ℝ and Φ𝑞 ∶ ℝ → ℝ.

13

Kolmogorov–Arnold representation theorem (1957)

Any multivariate continuous function can be represented (or

decomposed) as a finite superposition of continuous

univariate functions.

For any smooth function 𝑓 ∶ ℝ𝑛 → ℝ,

𝑓(𝐱) = 𝑓 (𝑥1, … , 𝑥𝑛) =
2𝑛+1

∑
𝑞=1

Φ𝑞 (
𝑛

∑
𝑝=1

𝜙𝑞,𝑝 (𝑥𝑝)) ,

where 𝜙𝑞,𝑝 ∶ [0, 1] → ℝ and Φ𝑞 ∶ ℝ → ℝ.
13

Kolmogorov-Arnold Networks

MLPs have fixed activation functions on nodes (“neurons”).

KANs have learnable activation functions on edges (“weights”).

For interpretability, KANs can be intuitively visualized and can easily

interact with human users.

Liu et al. (2024). KAN: Kolmogorov–Arnold Networks.

14

https://arxiv.org/pdf/2404.19756

Theorem

Formula

(Shallow)

Model

(Shallow)

Model

(Deep)

Multi-Layer Perceptron (MLP) Kolmogorov-Arnold Network (KAN)
Universal Approximation Theorem Kolmogorov-Arnold Representation Theorem

f(x) ≈
N(ϵ)

∑
i=1

aiσ(wi ⋅ x + bi) f(x) =
2n+1

∑
q=1

Φq

n

∑
p=1

ϕq,p(xp)

Model

fixed activation functions

on nodes

Formula

(Deep)

learnable weights

on edges

learnable activation functions

on edges

sum operation on nodes

MLP(x) = (W3 ∘ σ2 ∘ W2 ∘ σ1 ∘ W1)(x) KAN(x) = (Φ3 ∘ Φ2 ∘ Φ1)(x)

W1

σ1

W2

σ2

W3 Φ3

Φ2

Φ1
x x

MLP(x) KAN(x)

linear,

learnable

nonlinear,

fixed nonlinear,

learnable

(a) (b)

(c) (d)

15

Kolmogorov-Arnold Networks

16

Kolmogorov-Arnold Networks

KAN network dimensions:

[𝑛0, 𝑛1, … , 𝑛𝐿].
The activation value of neuron (ℓ, 𝑖) in layer
ℓ is 𝑥ℓ,𝑖.

Between layers ℓ and ℓ + 1, each pair of
neurons (ℓ, 𝑖) and (ℓ + 1, 𝑗) is connected
by a univariate function 𝜙ℓ,𝑗,𝑖.

ℓ = 0, … , 𝐿 − 1,
𝑖 = 1, … , 𝑛ℓ,
𝑗 = 1, … , 𝑛ℓ+1.

17

Kolmogorov-Arnold Networks

Forward pass

Each connection applies its own function:

𝑥̃ℓ,𝑗,𝑖 = 𝜙ℓ,𝑗,𝑖(𝑥ℓ,𝑖).

Each neuron in the next layer sums incoming

activations:

𝑥ℓ+1,𝑗 =
𝑛ℓ

∑
𝑖=1

𝜙ℓ,𝑗,𝑖(𝑥ℓ,𝑖).

18

Kolmogorov-Arnold Networks

In matrix form:

𝐱𝑙+1 =
⎛⎜⎜⎜⎜
⎝

𝜙𝑙,1,1(⋅) 𝜙𝑙,1,2(⋅) ⋯ 𝜙𝑙,1,𝑛𝑙
(⋅)

𝜙𝑙,2,1(⋅) 𝜙𝑙,2,2(⋅) ⋯ 𝜙𝑙,2,𝑛𝑙
(⋅)

⋮ ⋮ ⋱ ⋮
𝜙𝑙,𝑛𝑙+1,1(⋅) 𝜙𝑙,𝑛𝑙+1,2(⋅) ⋯ 𝜙𝑙,𝑛𝑙+1,𝑛𝑙

(⋅)

⎞⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝚽𝑙

𝐱𝑙,

where 𝚽𝑙 is the matrix of the 𝑙-th KAN layer.

19

Multilayer KAN

KAN(𝐱) = (𝚽𝐿−1 ∘ ⋯ ∘ 𝚽1 ∘ 𝚽0) (𝐱), 𝐱 ∈ ℝ𝑛0 .

20

E-KAN: Evidential KAN Classifier

21

Evidential Layers

Let us consider the input feature vector 𝐱 ⊆ ℝ𝑃.

An evidential classifier consists of 𝑛 prototypes, {𝐩1, … , 𝐩𝑛},
in ℝ𝑃.

An evidential layer constructs mass functions to quantify

uncertainty about classes 𝜔 ∈ Ω = {𝜔1, … , 𝜔𝑀} following

a three-step scheme.

22

Evidential Layers

1. The support between 𝐱 and each prototype 𝐩𝑖, 𝑖 ∈ {1, ⋯ , 𝑛}, is:

𝑠𝑖 = 𝜏𝑖 exp(− (𝜂𝑖 ∥𝐱 − 𝐩𝑖∥)2) , 𝜏𝑖 ∈ (0, 1), 𝜂𝑖 ∈ ℝ

2. The mass function 𝑚𝑖 associated to 𝐩𝑖 is:

𝑚𝑖 ({𝜔𝑗}) = ℎ𝑖
𝑗𝑠𝑖, 𝑗 ∈ {1, ⋯ , 𝑀}

𝑚𝑖(Ω) = 1 − 𝑠𝑖

where ℎ𝑖
𝑗 is the degree of membership of 𝐩𝑖 to class 𝜔𝑗, with

∑𝑀
𝑗=1 ℎ𝑖

𝑗 = 1. This yields:

𝐦𝑖 = (𝑚𝑖 ({𝜔1}) , ⋯ , 𝑚𝑖 ({𝜔𝑀}) , 𝑚𝑖(Ω))T .
23

3. The 𝑛 mass functions 𝐦𝑖 are combined using Dempster’s rule.

𝑚1({𝜔1}) 𝑚2({𝜔1}) … 𝑚𝑛({𝜔1})
𝑚1({𝜔2}) 𝑚2({𝜔2}) … 𝑚𝑛({𝜔2})
⋮ ⋮ ⋱ ⋮
𝑚1({𝜔𝑀}) 𝑚2({𝜔𝑀}) … 𝑚𝑛({𝜔𝑀})
𝑚1(Ω) 𝑚2(Ω) … 𝑚𝑛(Ω)

[Mass functions combination]

𝜇𝑖 ({𝜔𝑗}) = {𝑚1 ({𝜔𝑗}) , for 𝑖 = 1
𝜇𝑖−1 ({𝜔𝑗}) ⊕ 𝑚𝑖 ({𝜔𝑗}) , for 𝑖 > 1

where

𝜇𝑖−1 ({𝜔𝑗}) ⊕ 𝑚𝑖 ({𝜔𝑗}) = 𝜇𝑖−1 ({𝜔𝑗}) 𝑚𝑖 ({𝜔𝑗})
+ 𝜇𝑖−1 ({𝜔𝑗}) 𝑚𝑖(Ω) + 𝜇𝑖−1(Ω)𝑚𝑖 ({𝜔𝑗})

24

The output vector of the evidential layers is given by:

𝐦 = (𝑚 ({𝜔1}) , … , 𝑚 ({𝜔𝑀}) , 𝑚(Ω))T ,

and is obtained through the following relations:

𝑚 ({𝜔𝑗}) =
𝜇𝑛 ({𝜔𝑗})

∑𝑀
𝑘=1 𝜇𝑛 ({𝜔𝑘}) + 𝜇𝑛(Ω)

and

𝑚(Ω) = 𝜇𝑛(Ω)
∑𝑀

𝑘=1 𝜇𝑛 ({𝜔𝑘}) + 𝜇𝑛(Ω)
.

25

Decision-Making Criteria

Decision problem: An entity must choose a course of

action (act) from a setF = {𝑓1, ⋯ , 𝑓𝑀}.
Each of these decisions has a consequence drawn from

C = {𝑐1, ⋯ , 𝑐𝑀}.
These decisions are taken from the states

Ω = {𝜔1, ⋯ , 𝜔𝑀}.

In particular, an act is a function 𝑓 ∶ Ω → C.

26

Utility Function

The function 𝑢 ∶ C → ℝ assigns a real-valued number to every

consequence.

A higher value of 𝑢 indicates a better decision.

𝑐𝑖𝑗 = 𝑓𝑖(𝜔𝑗) represents the consequence of choosing
act 𝑓𝑖 when state 𝜔𝑗 occurs.

𝑢𝑖𝑗 = 𝑢(𝑐𝑖𝑗) denotes the corresponding utility.

27

Decision-Making Criteria
Consider the following sets:

Ω = {𝜔1, ⋯ , 𝜔𝑀} [classes]

F = {𝑓𝜔1
, ⋯ , 𝑓𝜔𝑀

} [acts]

Each act 𝑓𝜔𝑖
, which represents assigning class 𝜔𝑖, defines the lower and

upper expected values of the utility function as:

𝔼𝑚 (𝑓𝜔𝑖
) = ∑

𝐵⊆Ω
𝑚(𝐵) min

𝜔𝑗∈𝐵
𝑢𝑖𝑗

𝔼𝑚 (𝑓𝜔𝑖
) = ∑

𝐵⊆Ω
𝑚(𝐵) max

𝜔𝑗∈𝐵
𝑢𝑖𝑗

28

Decision-Making Criteria

Pessimistic preference-based decision rule:

𝑓𝜔𝑖
≽∗ 𝑓𝜔𝑗

⟺ 𝔼𝑚 (𝑓𝜔𝑖
) ≥ 𝔼𝑚 (𝑓𝜔𝑗

) ,

Optimistic preference-based decision rule:

𝑓𝜔𝑖
≽∗ 𝑓𝜔𝑗

⟺ 𝔼𝑚 (𝑓𝜔𝑖
) ≥ 𝔼𝑚 (𝑓𝜔𝑗

) ,

29

Decision-Making Criteria

Pignistic transformation, that distributes the mass equally

among all elements of C (Smets 1990):

BetP𝑚 (𝜔𝑗) = ∑
𝐴⊆Ω,𝜔𝑗∈𝐴

𝑚(𝐴)
|𝐴|

, ∀𝜔𝑗 ∈ Ω.

Thus, the criterion is defined by maximizing the quantity

𝔼𝑝(𝑓𝜔𝑖
) = ∑𝑀

𝑗=1 Bet𝑃𝑚(𝜔𝑗) 𝑢𝑖𝑗.

30

Experimental evaluation

Datasets:

MNIST

CIFAR-10

Metric:

Accuracy = 1
𝑁

𝑁
∑
𝑖=1

𝕀 (𝑦pred 𝑖
= 𝑦true 𝑖

) ,

where 𝕀 is the indicator function.
31

Results

[MNIST]

Model Accuracy (%) # parameters (trainable)

MLP 98.13 101770

CNN 99.50 824458

MLPKAN 98.53 298176

CNNKAN 99.35 1162368

EfficientNetKan 93.89 258400

Evidential EfficientNet 92.13 3302400

E-KAN 94.35 4692320

32

Results

[CIFAR-10]

Model Accuracy (%) # parameters (trainable)

MLP 45.29 394634

CNN 72.82 1070794

MLPKAN 49.55 591040

CNNKAN 72.01 1408704

EfficientNetKan 82.27 3302400

Evidential EfficientNet 83.32 258400

E-KAN 84.43 14584160

33

Results

For MNIST, implementing the three proposed models did not lead to

any performance improvement.

For CIFAR-10, there was a significant improvement compared to the

baseline models.

This difference likely arises because MNIST consists of grayscale digit

images, while EfficientNet-b0 was pretrained on ImageNet, a large dataset

of high-resolution color images. Therefore, its learned features do not

transfer effectively to MNIST.

In contrast, CIFAR-10 contains RGB images of diverse objects, making it

more similar to ImageNet and allowing the pretrained features to

generalize better.

34

