

Evidential Kolmogorov-Arnold Networks

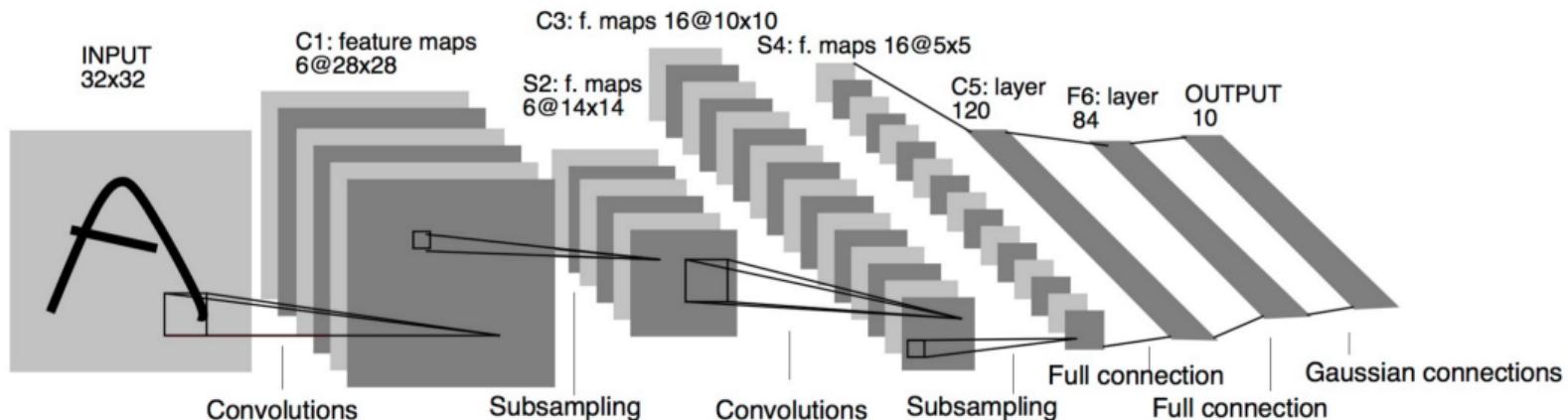
Transfer Learning Using Dempster–Shafer Layers

Alejandro Veloz

Rodrigo Pizarro

ConvNets for image classification

CNN = Convolutional Neural Networks = ConvNet



LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition.

ConvNets for image classification

The model always outputs the class it was trained on (cat, with confidence 0.81).

Outline

1. Dempster-Shafer theory
2. Kolmogorov-Arnold Networks (KAN)
3. Evidential KAN
4. Preliminary results

Uncertainty

Lack of knowledge about a system or process.

Random uncertainty:

- Represents intrinsic variation.
- Can be reduced adding more data.
- Can be addressed by Bayesian learning.

Epistemic uncertainty:

- Represents the lack of knowledge.
- Can be reduced by acquiring more knowledge or training better models.
- Can be addressed by **Dempster-Shafer theory**.

Mass functions

Let $\Omega = \{\omega_1, \dots, \omega_M\}$ be a finite set of states called the **frame of discernment**.

Let 2^Ω be the set of all subsets of Ω , that is,
 $2^\Omega = \{A : A \subseteq \Omega\}$.

A mass function is a function $m : 2^\Omega \rightarrow [0, 1]$ such that

$$m(\emptyset) = 0, \quad \sum_{A \subseteq \Omega} m(A) = 1.$$

Mass functions - example

Let X be the type of object in a region of an image and $\Omega = \{G, R, T, O, S\}$ the possible classes corresponding to grass, road, tree, obstacle, and sky.

Mass functions - example

Suppose a radar provides the information that $X \in \{T, O\}$, but there is a probability $p = 0.1$ that the information is unreliable.

Mass functions - example

Note that the probability p does not provide information about X , but rather about the sensor.

Let $S = \{\text{working, faulty}\}$ denote the possible states of the sensor.

- If the sensor is working, then $X \in \{\text{T, O}\}$.
- If the sensor is faulty, then $X \in \Omega$ and nothing else can be determined.

Mass functions - example

This uncertainty in the information can be represented by the following mass function m over Ω :

$$m(\{\text{T, O}\}) = 0.9, \quad m(\Omega) = 0.1$$

We can conclude that:

- $m(\{\text{T, O}\})$ is the probability of only knowing that $X \in \{\text{T, O}\}$ and nothing more.
- $m(\Omega)$ is the probability of knowing nothing at all.

Belief and Plausibility Functions

Given a mass function m and a subset $A \subseteq \Omega$.

The total belief of A , $\text{Bel} : 2^\Omega \rightarrow [0, 1]$, is:

$$\text{Bel}(A) = \sum_{E \subseteq A, E \neq \emptyset} m(E).$$

The plausibility of A , $\text{Pl} : 2^\Omega \rightarrow [0, 1]$, is:

$$\text{Pl}(A) = \sum_{E \cap A \neq \emptyset} m(E) = 1 - \text{Bel}(\bar{A}).$$

Belief and Plausibility Functions - example

Based on the previous example, it follows that:

$$\Omega = \{G, R, T, O, S\}, \quad m(\{T, O\}) = 0.9, \quad m(\Omega) = 0.1$$

Belief and plausibility values of some subsets of Ω :

A	\emptyset	$\{T\}$	$\{O\}$	$\{T, O\}$	$\{T, O, R\}$	$\{T, R\}$	$\{R, S\}$	Ω
$Bel(A)$	0	0	0	0.9	0.9	0	0	1
$Pl(A)$	0	1	1	1	1	1	0.1	1

Dempster's Combination Rule

Suppose that m_1 and m_2 are mass functions over Ω .

The combined function $m : 2^\Omega \rightarrow [0, 1]$ defined by and

$$m(A) = (m_1 \oplus m_2)(A) = \frac{1}{1 - \kappa} \sum_{B \cap C = A} m_1(B)m_2(C),$$

where

$$\kappa := \sum_{B \cap C = \emptyset} m_1(B)m_2(C) < 1,$$

is a valid mass function.

Kolmogorov–Arnold representation theorem (1957)

Kolmogorov–Arnold representation theorem (1957)

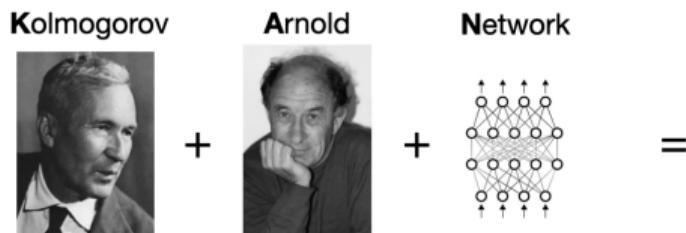
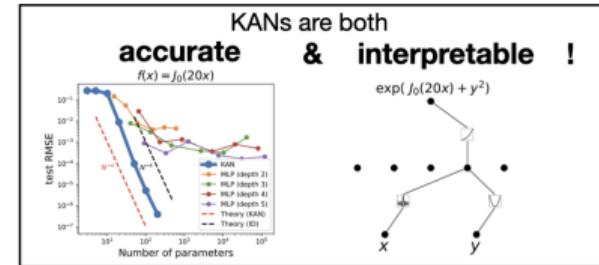
Any multivariate continuous function can be represented (or decomposed) as a finite superposition of continuous univariate functions.

For any smooth function $f : \mathbb{R}^n \rightarrow \mathbb{R}$,

$$f(\mathbf{x}) = f(x_1, \dots, x_n) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right),$$

where $\phi_{q,p} : [0, 1] \rightarrow \mathbb{R}$ and $\Phi_q : \mathbb{R} \rightarrow \mathbb{R}$.

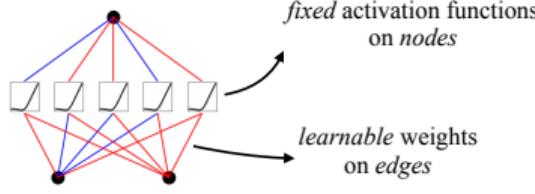
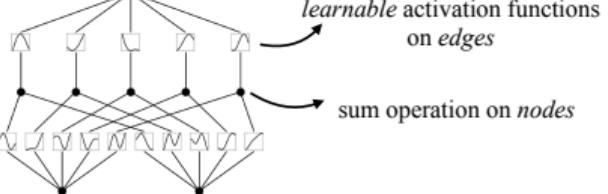
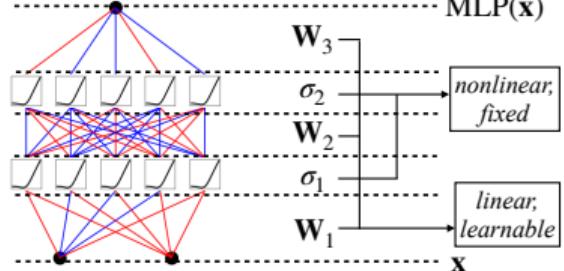
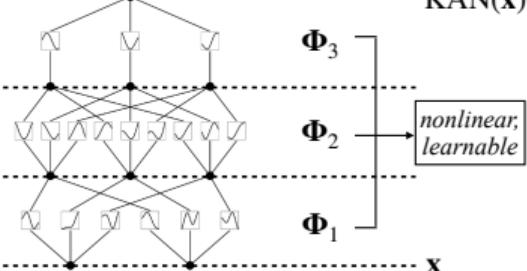
Kolmogorov-Arnold Networks



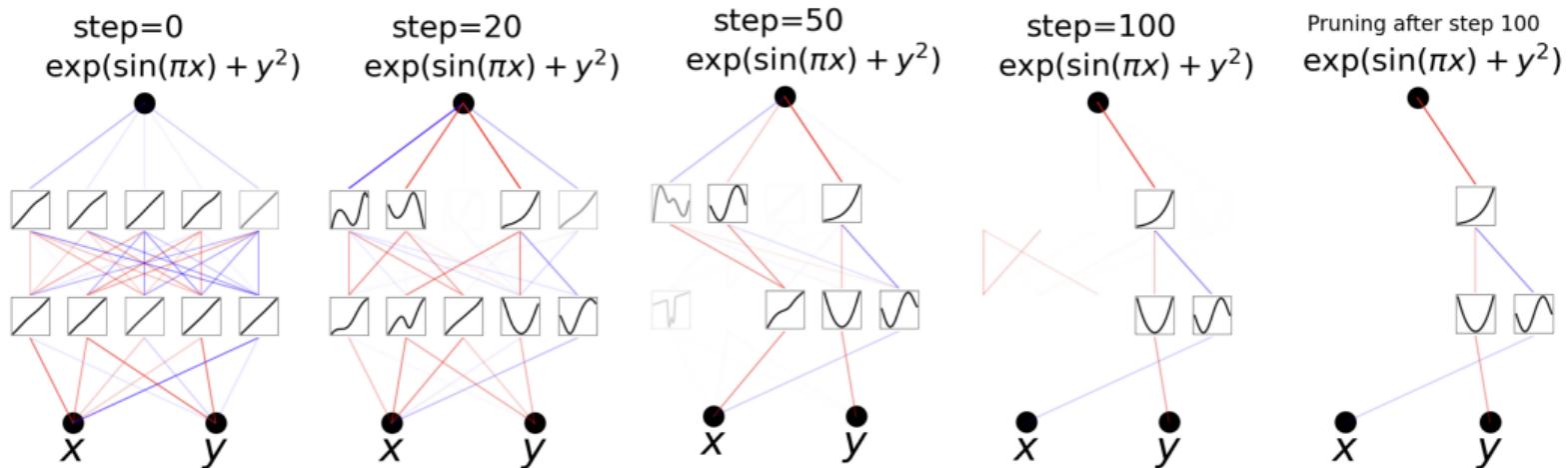
- MLPs have fixed activation functions on nodes ("neurons").
- KANs have **learnable activation functions on edges** ("weights").

For **interpretability**, KANs can be intuitively visualized and can easily interact with human users.

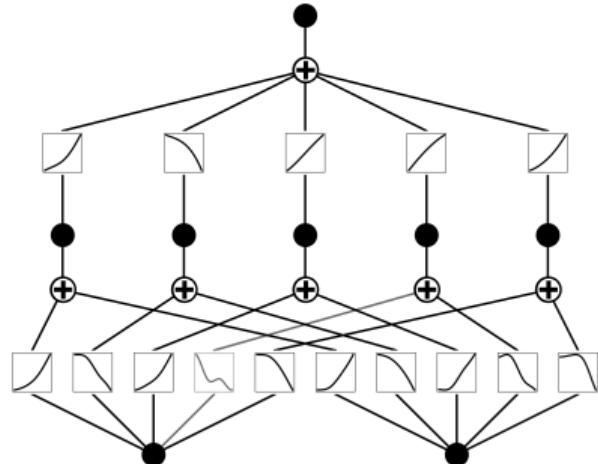
Liu et al. (2024). KAN: Kolmogorov–Arnold Networks.

Model	Multi-Layer Perceptron (MLP)	Kolmogorov-Arnold Network (KAN)
Theorem	Universal Approximation Theorem	Kolmogorov-Arnold Representation Theorem
Formula (Shallow)	$f(\mathbf{x}) \approx \sum_{i=1}^{N(\epsilon)} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x} + b_i)$	$f(\mathbf{x}) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$
Model (Shallow)	<p>(a) </p> <p>fixed activation functions on nodes</p> <p>learnable weights on edges</p>	<p>(b) </p> <p>learnable activation functions on edges</p> <p>sum operation on nodes</p>
Formula (Deep)	$\text{MLP}(\mathbf{x}) = (\mathbf{W}_3 \circ \sigma_2 \circ \mathbf{W}_2 \circ \sigma_1 \circ \mathbf{W}_1)(\mathbf{x})$	$\text{KAN}(\mathbf{x}) = (\Phi_3 \circ \Phi_2 \circ \Phi_1)(\mathbf{x})$
Model (Deep)	<p>(c) </p> <p>MLP(\mathbf{x})</p> <p>\mathbf{W}_3</p> <p>σ_2</p> <p>\mathbf{W}_2</p> <p>σ_1</p> <p>\mathbf{W}_1</p> <p>\mathbf{x}</p> <p>nonlinear, fixed</p> <p>linear, learnable</p>	<p>(d) </p> <p>KAN(\mathbf{x})</p> <p>Φ_3</p> <p>Φ_2</p> <p>Φ_1</p> <p>\mathbf{x}</p> <p>nonlinear, learnable</p>

Kolmogorov-Arnold Networks



Kolmogorov-Arnold Networks



KAN network dimensions:

$$[n_0, n_1, \dots, n_L].$$

The activation value of neuron (ℓ, i) in layer ℓ is $x_{\ell, i}$.

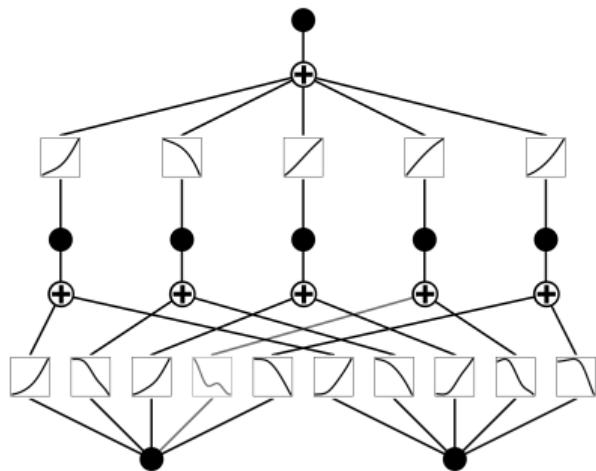
Between layers ℓ and $\ell + 1$, each pair of neurons (ℓ, i) and $(\ell + 1, j)$ is connected by a univariate function $\phi_{\ell, j, i}$.

$$\ell = 0, \dots, L - 1,$$

$$i = 1, \dots, n_\ell,$$

$$j = 1, \dots, n_{\ell+1}.$$

Kolmogorov-Arnold Networks



Forward pass

Each connection applies its own function:

$$\tilde{x}_{\ell, j, i} = \phi_{\ell, j, i}(x_{\ell, i}).$$

Each neuron in the next layer sums incoming activations:

$$x_{\ell+1, j} = \sum_{i=1}^{n_{\ell}} \phi_{\ell, j, i}(x_{\ell, i}).$$

Kolmogorov-Arnold Networks

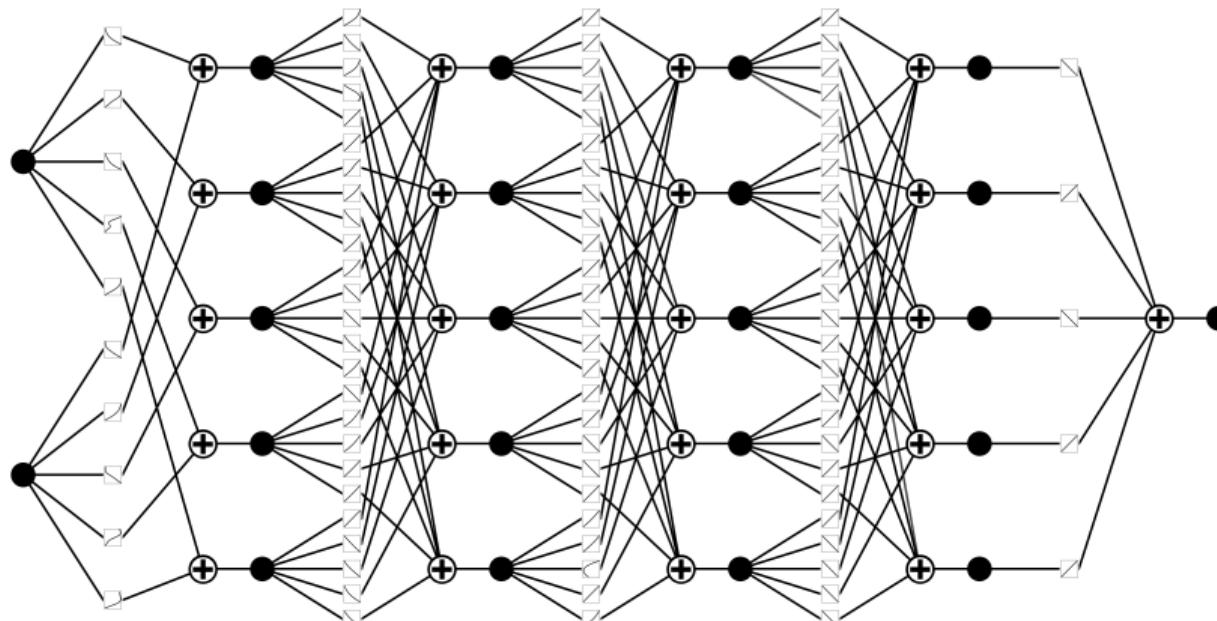
In matrix form:

$$\mathbf{x}_{l+1} = \underbrace{\begin{pmatrix} \phi_{l,1,1}(\cdot) & \phi_{l,1,2}(\cdot) & \cdots & \phi_{l,1,n_l}(\cdot) \\ \phi_{l,2,1}(\cdot) & \phi_{l,2,2}(\cdot) & \cdots & \phi_{l,2,n_l}(\cdot) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{l,n_{l+1},1}(\cdot) & \phi_{l,n_{l+1},2}(\cdot) & \cdots & \phi_{l,n_{l+1},n_l}(\cdot) \end{pmatrix}}_{\Phi_l} \mathbf{x}_l,$$

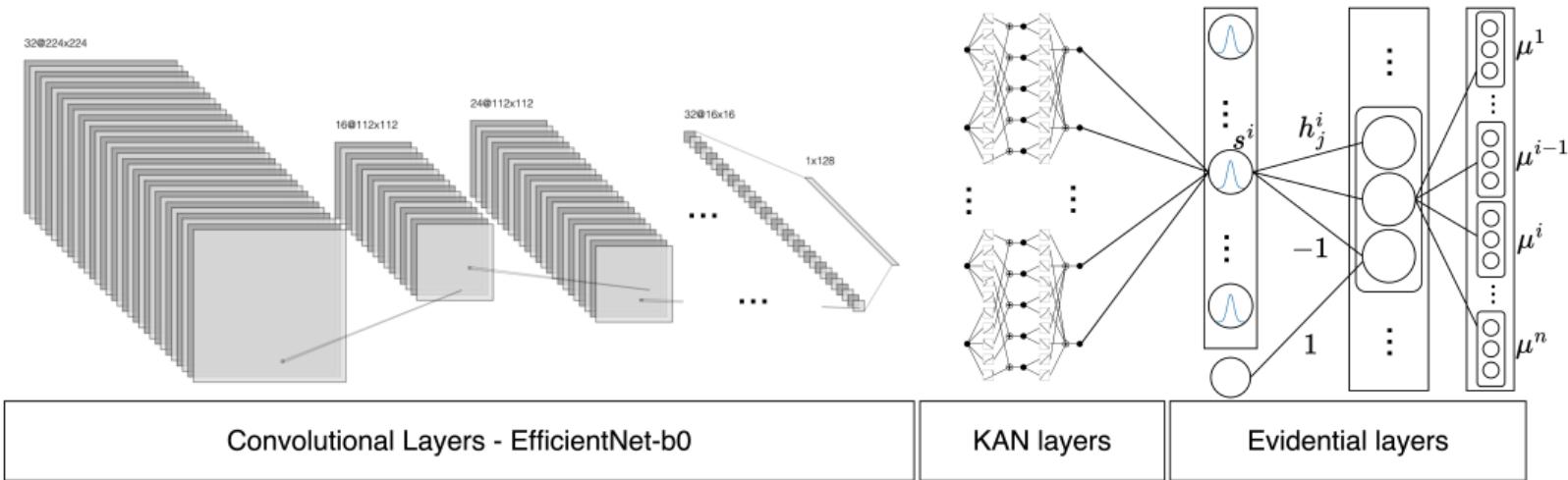
where Φ_l is the matrix of the l -th KAN layer.

Multilayer KAN

$$\text{KAN}(\mathbf{x}) = (\Phi_{L-1} \circ \dots \circ \Phi_1 \circ \Phi_0)(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{n_0}.$$



E-KAN: Evidential KAN Classifier



	Operation	$\hat{H}_i \times \hat{W}_i$	\hat{C}_i	#Layers
1	Conv3x3	224×224	32	1
2	MBCov1, k3x3	112×112	16	1
3	MBCov6, k3 \times 3	112×112	24	2
4	MBCov6, k5 \times 5	56×56	40	2
5	MBCov6, k3x3	28×28	80	3
6	MBCov6, k5 \times 5	14×14	112	3
7	MBCov6, k5 \times 5	14×14	192	4
8	MBCov6, k3x3	7×7	320	1
9	Conv1 \times 1 & Pooling & FC	7×7	1280	1

Evidential Layers

Let us consider the input feature vector $\mathbf{x} \subseteq \mathbb{R}^P$.

An evidential classifier consists of n prototypes, $\{\mathbf{p}^1, \dots, \mathbf{p}^n\}$, in \mathbb{R}^P .

An evidential layer constructs mass functions to quantify uncertainty about classes $\omega \in \Omega = \{\omega_1, \dots, \omega_M\}$ following a three-step scheme.

Evidential Layers

1. The support between \mathbf{x} and each prototype $\mathbf{p}^i, i \in \{1, \dots, n\}$, is:

$$s^i = \tau^i \exp \left(-(\eta^i \|\mathbf{x} - \mathbf{p}^i\|)^2 \right), \quad \tau^i \in (0, 1), \eta^i \in \mathbb{R}$$

2. The mass function m^i associated to \mathbf{p}^i is:

$$\begin{aligned} m^i(\{\omega_j\}) &= h_j^i s^i, \quad j \in \{1, \dots, M\} \\ m^i(\Omega) &= 1 - s^i \end{aligned}$$

where h_j^i is the degree of membership of \mathbf{p}^i to class ω_j , with $\sum_{j=1}^M h_j^i = 1$. This yields:

$$\mathbf{m}^i = (m^i(\{\omega_1\}), \dots, m^i(\{\omega_M\}), m^i(\Omega))^T.$$

3. The n mass functions \mathbf{m}^i are combined using Dempster's rule.

$$\begin{array}{cccc} m^1(\{\omega_1\}) & m^2(\{\omega_1\}) & \dots & m^n(\{\omega_1\}) \\ m^1(\{\omega_2\}) & m^2(\{\omega_2\}) & \dots & m^n(\{\omega_2\}) \\ \vdots & \vdots & \ddots & \vdots \\ m^1(\{\omega_M\}) & m^2(\{\omega_M\}) & \dots & m^n(\{\omega_M\}) \\ m^1(\Omega) & m^2(\Omega) & \dots & m^n(\Omega) \end{array}$$

[Mass functions combination]

$$\mu^i(\{\omega_j\}) = \begin{cases} m^1(\{\omega_j\}), & \text{for } i = 1 \\ \mu^{i-1}(\{\omega_j\}) \oplus m^i(\{\omega_j\}), & \text{for } i > 1 \end{cases}$$

where

$$\begin{aligned} \mu^{i-1}(\{\omega_j\}) \oplus m^i(\{\omega_j\}) &= \mu^{i-1}(\{\omega_j\}) m^i(\{\omega_j\}) \\ &\quad + \mu^{i-1}(\{\omega_j\}) m^i(\Omega) + \mu^{i-1}(\Omega) m^i(\{\omega_j\}) \end{aligned}$$

The output vector of the evidential layers is given by:

$$\mathbf{m} = (m(\{\omega_1\}), \dots, m(\{\omega_M\}), m(\Omega))^T,$$

and is obtained through the following relations:

$$m(\{\omega_j\}) = \frac{\mu^n(\{\omega_j\})}{\sum_{k=1}^M \mu^n(\{\omega_k\}) + \mu^n(\Omega)}$$

and

$$m(\Omega) = \frac{\mu^n(\Omega)}{\sum_{k=1}^M \mu^n(\{\omega_k\}) + \mu^n(\Omega)}.$$

Decision-Making Criteria

- **Decision problem:** An entity must choose a course of action (act) from a set $\mathcal{F} = \{f_1, \dots, f_M\}$.
- Each of these decisions has a consequence drawn from $\mathcal{C} = \{c_1, \dots, c_M\}$.
- These decisions are taken from the states $\Omega = \{\omega_1, \dots, \omega_M\}$.

In particular, an act is a function $f : \Omega \rightarrow \mathcal{C}$.

Utility Function

The function $u : \mathcal{C} \rightarrow \mathbb{R}$ assigns a real-valued number to every consequence.

- A higher value of u indicates a better decision.
- $c_{ij} = f_i(\omega_j)$ represents the consequence of choosing act f_i when state ω_j occurs.
- $u_{ij} = u(c_{ij})$ denotes the corresponding utility.

Decision-Making Criteria

Consider the following sets:

- $\Omega = \{\omega_1, \dots, \omega_M\}$ [classes]
- $\mathcal{F} = \{f_{\omega_1}, \dots, f_{\omega_M}\}$ [acts]

Each act f_{ω_i} , which represents assigning class ω_i , defines the lower and upper expected values of the utility function as:

$$\underline{\mathbb{E}}_m(f_{\omega_i}) = \sum_{B \subseteq \Omega} m(B) \min_{\omega_j \in B} u_{ij}$$

$$\overline{\mathbb{E}}_m(f_{\omega_i}) = \sum_{B \subseteq \Omega} m(B) \max_{\omega_j \in B} u_{ij}$$

Decision-Making Criteria

Pessimistic preference-based decision rule:

$$f_{\omega_i} \succcurlyeq_* f_{\omega_j} \Leftrightarrow \underline{\mathbb{E}}_m (f_{\omega_i}) \geq \underline{\mathbb{E}}_m (f_{\omega_j}),$$

Optimistic preference-based decision rule:

$$f_{\omega_i} \succcurlyeq^* f_{\omega_j} \Leftrightarrow \bar{\mathbb{E}}_m (f_{\omega_i}) \geq \bar{\mathbb{E}}_m (f_{\omega_j}),$$

Decision-Making Criteria

Pignistic transformation, that distributes the mass equally among all elements of \mathcal{C} (Smets 1990):

$$\text{BetP}_m(\omega_j) = \sum_{A \subseteq \Omega, \omega_j \in A} \frac{m(A)}{|A|}, \forall \omega_j \in \Omega.$$

Thus, the criterion is defined by maximizing the quantity $\mathbb{E}_p(f_{\omega_i}) = \sum_{j=1}^M \text{BetP}_m(\omega_j) u_{ij}$.

Experimental evaluation

Datasets:

- MNIST
- CIFAR-10

Metric:

$$\text{Accuracy} = \frac{1}{N} \sum_{i=1}^N \mathbb{I} \left(y_{\text{pred}_i} = y_{\text{true}_i} \right),$$

where \mathbb{I} is the indicator function.

Results

[MNIST]

Model	Accuracy (%)	# parameters (trainable)
MLP	98.13	101770
CNN	99.50	824458
MLPKAN	98.53	298176
CNNKAN	99.35	1162368
EfficientNetKan	93.89	258400
Evidential EfficientNet	92.13	3302400
E-KAN	94.35	4692320

Results

[CIFAR-10]

Model	Accuracy (%)	# parameters (trainable)
MLP	45.29	394634
CNN	72.82	1070794
MLPKAN	49.55	591040
CNNKAN	72.01	1408704
EfficientNetKan	82.27	3302400
Evidential EfficientNet	83.32	258400
E-KAN	84.43	14584160

Results

- For MNIST, implementing the three proposed models did not lead to any performance improvement.
- For CIFAR-10, there was a significant improvement compared to the baseline models.

This difference likely arises because MNIST consists of grayscale digit images, while EfficientNet-b0 was pretrained on ImageNet, a large dataset of high-resolution color images. Therefore, its learned features do not transfer effectively to MNIST.

In contrast, CIFAR-10 contains RGB images of diverse objects, making it more similar to ImageNet and allowing the pretrained features to generalize better.