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ConvNets for image classification

CNN = Convolutional Neural Networks = ConvNet

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
3932 6@28x28

S2: f. maps
6@14x14
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Convolutions

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based
learning applied to document recognition.



ConvNets for image classification

The model always outputs the class it was trained on (cat, with confidence
0.81).
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Dempster-Shafer theory
Kolmogorov-Arnold Networks (KAN)
Evidential KAN

Preliminary results



Uncertainty

Lack of knowledge about a system or process.

Random uncertainty:
e Represents intrinsic variation.

e Can be reduced adding more data.
e Can be addressed by Bayesian learning.

Epistemic uncertainty:
e Represents the lack of knowledge.
e Can be reduced by acquiring more knowledge or training better
models.
e Can be addressed by Dempster-Shafer theory.



Mass functions

Let Q = {wy, ..., w,,} be afinite set of states called the
frame of discernment.

Let 2¢* be the set of all subsets of (), that is,

A mass function is a function m : 2% — [0, 1] such that

m(0) = 0, Z m(A) = 1.
ACQ



Mass functions - example

Let X be the type of object in a region of an image and
2 = {G,R, T,0,S} the possible classes corresponding to
grass, road, tree, obstacle, and sky.



Mass functions - example

Suppose a radar provides the information that X € {T, 0},

but there is a probability p = 0.1 that the information is
unreliable.



Mass functions - example

Note that the probability p does not provide information
about X, but rather about the sensor.

Let S = {working, faulty} denote the possible states of the
Sensor.

« Ifthe sensor is working, then X € {T,0}.
« Ifthe sensoris faulty, then X € €2 and nothing else can
be determined.



Mass functions - example

This uncertainty in the information can be represented by the
following mass function m over €2:

m({T,0}) =0.9, m(Q) =0.1
We can conclude that:

« m({T,0}) is the probability of only knowing that
X € {T,0} and nothing more.
« m(£2) is the probability of knowing nothing at all.
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Belief and Plausibility Functions

Given a mass function m and a subset A C ().

The total belief of A, Bel : 2% — [0, 1], is:

Bel(A)= )  m(E).
ECA B0
The plausibility of A, Pl : 2% — [0, 1], is:

PIA) = )  m(E)=1-Bel(A).

ENA+)
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Belief and Plausibility Functions - example

Based on the previous example, it follows that:

Q={G,R,T,0,S}, m({1T,0})=0.9,

m(2) = 0.1

Belief and plausibility values of some subsets of €2:
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Dempster’'s Combination Rule

Suppose that m, and m, are mass functions over (2.
The combined function m : 22 — [0, 1] defined by and

Z my(B)my(C),

BNnC=A

1
11—k

m(A) = (my @ my)(A)

where
fi= Y my(Bimy(C) <1,
BNC=0
is a valid mass fFunction.
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Kolmogorov-Arnold representation theorem (1957)
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Kolmogorov-Arnold representation theorem (1957)

Any multivariate continuous function can be represented (or
decomposed) as a finite superposition of continuous
univariate functions.

For any smooth function f : R" — R,

2n+-1 n
f(X) — f(xb >xn) — Z (I)q Z¢q,p (xp) ’
g=1 p=1

where ¢, , : [0,1] = Rand®, : R — R.
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Kolmogorov-Arnold Networks

Kolmogorov Arnold Network KAN

111t

KANSs are both
accurate & interpretable !

fx) =Jo(20x)

exp(Jo(20x) +y?)

Py

~<-\< :

;

e MLPs have fixed activation functions on nodes (“neurons”).
e KANSs have learnable activation Functions on edges (“weights”).

For interpretability, KANs can be intuitively visualized and can easily

interact with human users.

Liu et al. (2024). KAN: Kolmogorov-Arnold Networks.



https://arxiv.org/pdf/2404.19756
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Model | Multi-Layer Perceptron (MLP) | Kolmogorov-Arnold Network (KAN)
Theorem Universal Approximation Theorem Kolmogorov-Arnold Representation Theorem
F 1 N(e) 2n+1 n
ormula . -
(Shallow) fx) ~ Z ao(W;- X +b) Jx) = 2: @, Z} bqp(xp)
i=1 9= =
(€)) fixed activation functions | (b) /T\ learnable activation functions
on nodes N J O DB on edges
Model /
(Shallow) ,A =Z =Z u u ~— sum operation on nodes
learnable weights NANN VAN
on edges \V \V
F I
(Decp) MLP(x) = (Wy o 0, Wy e 07« W))(X) KANG) = (@3 0 @, = @))(x)
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(Deep)

linear,
learnable
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Kolmogorov-Arnold Networks

step=0 step=20 step=50 step=100 Pruning after step 100
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Kolmogorov-Arnold Networks
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KAN network dimensions:

g, My, s ]

The activation value of neuron (¥, %) in layer
Lisxy ;.

Between layers £ and ¢ + 1, each pair of
neurons (¢, %) and (¢ + 1, j) is connected
by a univariate function ¢, , ;.
£=0,..,L—1,

1=1,...,n,,

J=1,...,m, .



Kolmogorov-Arnold Networks

/R Forward pass

7 N v U Each connection applies its own function:
@ @ ’i‘ @ @ ,j 7 ¢£,j ’L( )

/ MDY /I Each neuron in the next layer sums incoming

W \V activations:

LY
Lot1,5 = Z </5e,j,7:(37e,¢)-
i=1
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Kolmogorov-Arnold Networks

In matrix form:

Gr110)  bra20) o Pran, ()
¢z,2',1(‘> ¢l,2.,2(') ¢z,2,-n,(‘)

¢l,nl+1,l<'> ¢l,nl+1,2(') ¢l,nl+1,nl(')

P,

Xi+1 — X1

where @ is the matrix of the [-th KAN layer.



Multilayer KAN
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E-KAN: Evidential KAN Classifier
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Convolutional Layers - EfficientNet-b0

KAN layers

Evidential layers

Operation ﬁl X Wl C; | #layers
1| Conv3x3 224 x 224 |32 1
2 | MBConv1, k3x3 112 x 112 |16 1
3 | MBConvé, k3 x 3 112x 11224 |2
4| MBConv6, kb X 5 56 x 56 40 2
5 | MBConve, k3x3 28 x 28 80 3
6 | MBConve6, kb X 5 14 x 14 112 |3
7 | MBConv6, kb X 5 14 x 14 192 |4
8 | MBConvé, k3x3 TxT7 320 |1
9 | Convl X1 &Pooling&FC | 7 x 7 1280 | 1
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Evidential Layers

Let us consider the input Feature vector x C RY.

An evidential classifier consists of 1 prototypes, {pl, ., p"}
in RY.

An evidential layer constructs mass functions to quantify
uncertainty about classes w € 2 = {wy, ... ,w,, } following
a three-step scheme.
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Evidential Layers
1. The support between x and each prototype pi,i e {1, T n}, is:
. . . ) . .
s = T exp (— (" Hx— p'LH) ) , 11€(0,1),n"eR

2. The mass function m* associated to p* is:
({wj}) - hi Y, Jed{l, -, M}
m*(Q)=1—s*
where hi is the degree of membership of pi to class W, with
S M . hz = 1. This yields:

m’ = (m? ({w;}),,m? {wy}), m Q).



3. The n mass functions m® are combined using Dempster’s rule.

m'({wi}) m*({w}) . m"({wi})
ml({w2}> mQ({W2}) o m"({wQ})

mH({wad) mA(wrd) o mt({wah)
m!(Q) m?2(Q) e m™(Q2)
[Mass functions combination]

fore =1

i m! ({w;})
pt({w;}) = { L ({w, ) @mi ({w,}), fori>1
where

1t ({w; ) @m? ({w;}) = 0t ({w;}) m? ({w;})
+ 7 ({wsh) mH(Q) + pH(Q)m ({w;})

24
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The output vector of the evidential layers is given by:

m = (m ({w;}), o, m {wpr}), m(Q),

and is obtained through the following relations:

()
({3)) St n ({wih) + um(Q)
and
p"(€2) .
Yoot m ({wi}) + um(9)

m(§2) =
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Decision-Making Criteria

« Decision problem: An entity must choose a course of
action (act) fromaset F = {fy, ", fu}-
« Each of these decisions has a consequence drawn from

C= {Clamch}'

« These decisions are taken from the states
Q={wy, -, wyt

In particular, an act is a function f : €2 — C.
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Utility Function

The function u : C — R assigns a real-valued number to every
consequence.

« A higher value of u indicates a better decision.
« Cij = fz( ) represents the consequence of choosing

act f, when state w, occurs.

. u;; = u(c;;) denotes the corresponding utility.
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Decision-Making Criteria

Consider the following sets:

o O ={wy,,wyt I[classes]

o F={fu, > fu,} [acts]

Each act fwi, which represents assigning class w,, defines the lower and
upper expected values of the utility function as:

E (fw> = Z m(B) min u,;

Bco ijB
Ep (fo) =D m(B) max i
BCQ wje
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Decision-Making Criteria

Pessimistic preference-based decision rule:

fwi ?* fwj @Em (fo%) ZEm <fwj>’

Optimistic preference-based decision rule:

fo, 7 fo, = E (fu) 2B, (fo,)

7
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Decision-Making Criteria

Pignistic transformation, that distributes the mass equally
among all elements of C (Smets 1990):

BetP,, (w;) = Z WTEL;?) Vw; € Q.
ACQw €A

Thus, the criterion is defined by maximizing the quantity

Ey(fu,) =2, Bet Py (w)) ;.

(2
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Experimental evaluation
Datasets:

o MNIST
o CIFAR-10

Metric:

1 N
Accuracy — NZH (ypredi — ytruei> )
=1

where [ is the indicator Function.



32

Results

[MNIST]

Model Accuracy (%) | # parameters (trainable)
MLP 98.13 101770

CNN 99.50 824458

MLPKAN 98.53 298176

CNNKAN 99.35 1162368
EfficientNetKan 93.89 258400

Evidential EfficientNet | 92.13 3302400

E-KAN 94.35 4692320




33

Results

[CIFAR-10]
Model Accuracy (%) | # parameters (trainable)
MLP 45.29 394634
CNN 72.82 1070794
MLPKAN 49,55 591040
CNNKAN 72.01 1408704
EfficientNetKan 82.27 3302400
Evidential EfficientNet | 83.32 258400
E-KAN 84.43 14584160
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Results

e For MNIST, implementing the three proposed models did not lead to
any performance improvement.

e For CIFAR-10, there was a significant improvement compared to the
baseline models.

This difference likely arises because MNIST consists of grayscale digit
images, while EfficientNet-b0 was pretrained on ImageNet, a large dataset
of high-resolution color images. Therefore, its learned features do not
transfer effectively to MNIST.

In contrast, CIFAR-10 contains RGB images of diverse objects, making it
more similar to ImageNet and allowing the pretrained features to
generalize better.



