Transformers

Dr. Alejandro Veloz

Attention

The fundamental concept that underlies a transformer is attention.

[I][swam][across][the][river][to][get][to][the][other][bank]

[I](swam][across][the][river][to][get][to][the][other][bank]

Attention

| swam across the river to get to the other bank.

| walked across the road to get cash from the bank.

<ped> <peds>
<S03>« \Awom_v

uoluido =

Aw Aw
ul ~u|
Buissiw - Buissiw
ale ale
am am
1eym 1eym
sl sl
sy} siy
Isnl~g7 isnf
aq / -9q

pnoys -~
uoneoldde

pinoys
= uoleoldde

si { = ~= S|
g~ « ng
109ad 109p18d
8q <. aq
JoAsU Janau
[1m: [m
meT MeT
ayL ayL

Transformer processing

The input data to a transformer is a set of vectors {x,, } of
dimensionality D, wheren =1, ..., N.

We refer to these data vectors as tokens:

e word within a sentence,
e a patch within an image, or
e an amino acid within a protein.

The elements x,,; of the tokens are called features.

Transformers handle heterogeneous data by merging variables into a
unified token set, eliminating the need for specialized architectures.

N (tokens)

SH

D (features)

Notation

Tokens are stored in X of dimensions N x D.

T

5 and

The n-th row comprises the token vector x
wheren =1, ..., N labels the rows.

For most applications, we will require a data set
containing many sets of tokens, such as
independent passages of text where each word is

represented as one token.

Transformer Layer

A transformer layer maps an input matrix X to an output matrix X of the
same size:

~

X = TransformerLayer[X].

Stacking multiple layers yields deep networks that learn complex
representations through trainable parameters optimized by gradient
descent.

Each layer consists of two stages:

e An attention mechanism that mixes information (features) across tokens.
e A feed-forward stage that transforms features within each token.

Attention

Let x, ..., X, beinput tokens in an embedding space.

We aim to map them to a modified representationy, ..., y, a set of
tokens in a new embedding space with richer semantic structure.

e One particular value y,, depends on all the inputs vectors Xy, ... , Xy
« This dependence is stronger for inputs x,,, that are particularly
important for determining y,,.

Attention

A simple way to transform tokens x;, ..., Xy intoyy, ...,y is the

linear mapping:
N
m=1

where a,,, are called attention weights.

nm

Attention weights considerations

1. The coefficients should be close to zero for input tokens that have
little influence on the output y,, and largest for inputs that have
most influence.

2. We therefore constrain the coefficients to be non-negative to avoid

situations in which one coefficient can become large and positive
while another coefficient compensates by becoming large and
negative.

3. We also want to ensure that if an output pays more attention to a

particular input, this will be at the expense of paying less attention to
the other inputs, and so we constrain the coefficients to sum to unity.

Attention weights contraints

The weighting coefficients must satisfy the following two constraints:

a, =0

nm

N

§ :a’nm =1
m=1

e Together these imply that each coefficient lies in the range 0 < a,,,,, < 1andso
the coefficients define a partition of unity.

e Ifa,,,, =1,itfollowsthata,,, = 0fFforn # m,and thereforey,, = x,, (the
input vector is unchanged).

e More generally, the outputy,, is a blend of the input vectors with some inputs
given more weight than others.

Self-attention

n m)

N
Zm’:l exp (x'x,)

exp (x]x

nm -~

In matrix notation:
Y = Softmax [XX] X

where Sothax[L] is an operator that takes the exponential of every
element of a matrix L and then normalizes each row independently to

sum to one.

Introducing network parameters

Self-attention — no learnable parameters.

o Features within a token x,, plays an equal role in determining the
attention coefficients.

e We would like the network to have the flexibility to focus more on
some features than others when determining token similarity.

We can address both issues if we define modified feature vectors given
by the linear transformation:

X = XU

where Uisa D x D matrix of learnable weight parameters (analogous
to a layer in a standard neural network).

Introducing network parameters
This gives a modified transformation:
Y = Softmax [XUU'X'| XU
Although this has much more Flexibility, the matrix:
XUU™XT
is symmetric.
E.g. ‘cat’ is equally associated with ‘pet’, as ‘pet’ with ‘cat’.

The softmax function is the sole mechanism responsible for introducing
asymmetry into the attention weight matrix.

Introducing network parameters

To support asymmetric attention (e.g. cat — pet strong, pet — cat less
strong), we can allow the query, key, and value matrices each having their
own independent linear transformations.

Y = Softmax [XU U'X"| XU
T
= Softmax [X W9 (XW®)'| XW
= Softmax [Q K'] V
e The weight matrices W<q), W® and W represent learnable parameters.
e W@ WK 3re of dimension D x D,, whereas W) is of dimension D x D,.

e Multiple transformer layers can be stacked on top of each other if each layer has
the same dimensionality.

Attention layer

Y = Softmax [XW@ (XW®)'| XW) = softmax [Q K] V

/
N\

x |w@ | =

D xD

Q

x |w® | =

N\
/

QK"

Attention layer

Y = Softmax [XW@ (XW®)'| XW) = softmax [Q K] V

()

O

Y = Softmax < QKT > X Y

N x D, N x N N x Dy

Scaled dot-product self-attention layer

Y
| mat mul |
Y = Attention (Q, K, V)
QXK'
= Softmax \Y mat mul
A /Dk A A
Q K \%
[W<q> W(k)] [Wm]
t 3)

Scaled dot-product self-attention layer

Require: Set of tokens X € RM*P : {x;, ..., xx}
Weight matrices {W(q), W<k)} € RP*DPi and W) ¢ RP*D.
Ensure: Attention (Q, K, V) € RV*Pv: {y .. yx}
1. Q=XWW compute queries Q € RV*Dx
2 K=XWHK compute keys K € RV*Dx
3 V=XWWV compute values V € RN*D
4

: return
T

Attention (Q, K, V) = Softmax [

/D,

K]V

Multi-Head Attention

e The attention layer allows the output vectors to attend to patterns
of input vectors and is called an attention head.

e However, there might be multiple patterns of attention that are
relevant at the same time.

e Using a single attention head can lead to averaging over these
effects. Instead, we use multiple attention heads in parallel.

. Identically structured copies of a single head, with independent learnable
parameters for the query, key, and value matrices.

« Analogous to using multiple different filters in each layer of a convolutional
network.

20

Multi-Head Attention

Consider H headsindexedbyh =1, ..., H:
Hh — Attention (Qh7 Kh7 V}L)

where Attention(-, -, -) is the scaled self-attention function, and each
head has separate projection matrices:

Q, = XW'¥
Kh - XWELk)
Vi = XW§LV)

21

Multi-Head Attention

The combined combined output is:

Y (X) = Concat[H,, ..., Hy] W

The heads are first
concatenated into a single
matrix, and the result is
then linearly transformed
using a matrix W(©)

H,

Hx

N x HD,

W ©)

HD, x D

N x D

22

Multi-Head Attention

Require: Set of tokens X € RV*P : {x, ... xy}
Query weight matrices {W(lq), ,WS;)} € RP*D
Key weight matrices {W(lk), ,Wg?} € RPxDP
Value weight matrices {W(lv), ,Wg)} e RPxD,
Output weight matrix W) ¢ RHD.xD

Ensure: Y € RV*D . {y .. xy}
// compute self-attention for each head

1: forh = 1to H do

2 Q,=XW¥ K, =XxWV v, =xw\

32 H, = Attention (Q,,, K,,, V},) //H,, € RN*Dy
4: end for

5: H = Concat [H,, ... ,Hy] //concatenate heads

6 return Y(X) = HW©

23

Multi-Head Attention

T

linear

*

concat

]4_

[
of
L

A

[self-attention] [self-attention]

[self-attention]

f_i_i_i_i_i_T—I_i_f

X

24

X

*

(add & norm

*

mp)

V4

[add & norm]«

Transformer layer

Y (X) = Concat[H,, ..., H;;] W
Z = LayerNorm [Y (X) + X]

pre-norm
Z=Y (X')+X, where X’ =LayerNorm [X]
X = LayerNorm[MLP[Z] + Z]
pre-norm
X =MLP(Z')+Z, where Z’ = LayerNorm[Z]

In a typical transformer there are multiple such layers
stacked on top of each other.

The layers generally have identical structures, although there
is no sharing of weights and biases between different layers.

25

Transformer layer

Require: Set of tokens X € RV*P : {x, ... xy}
Multi-head self-attention layer parameters

Feed-forward network parameters
Ensure: X € RV*P : {%,, ..., Xy}
1: Z = LayerNorm[Y (X)) + X]
2. X = LayerNorm[MLP[Z] + Z]
3: return X

// Y (X) from multi-head attention algorithm
// shared neural network return X

26

Positional encoding

The matrices W;Lq), WSQ, and WEL\O are shared across the input
tokens.

A transformer is equivariant with respect to input permutations.

Permuting the order of the input tokens, i.e., the rows of X, results in
the same permutation of the rows of the output matrix X.

The representation learned by a transformer will be independent of the
input token ordering.

'The food was bad, not good at all’ and 'The food was good, not bad at all’ contain the
same tokens but different meanings because of the different token ordering.

27

Positional encoding

The sharing of parameters in the network architecture Facilitates the
massively parallel processing of the transformer.

Also allows the network to learn long-range dependencies just as
effectively as short-range dependencies.

However, the lack of dependence on token order becomes a major
limitation when we consider sequential data (e.g. words in NLP).

28

Positional encoding

Strategy: to retain the powerful properties of the attention layers, the
token order is encoded in the data itself instead of changing the network
architecture.

Solution: Position encoding vector r,, associated with each input position
1 and then combine this with the associated input token embedding x,,.

We can add the position vectors onto the token vectors to give:

29

Positional encoding

For a given position n the
associated
position-encoding vector

has components 7,,; given
by (Vaswani et al. 2017):

S
. n D
sin (m) ; 8
if 7 is even
r.o. =
n n
cos (L(z'—l)/D> 9
n

if 2 is odd

30

Natural Language Processing (NLP)

31

Word embedding

The First challenge is to convert the words into a numerical
representation that is suitable for use as the input to a deep neural
network.

One simple approach is to define a fixed dictionary of words and then
introduce vectors of length equal to the size of the dictionary along with
a one hot representation for each word.

The kth word in the dictionary is encoded with a vector havinga 1in
position k and 0 in all other positions.

For example if aardwolf is the third word in our dictionary then its vector
representation would be (0,0, 1,0, ..., 0).

32

Word embedding

The embedding process can be defined by a matrix E of size D x K
where D is the dimensionality of the embedding space and K is the
dimensionality of the dictionary.

For each one-hot encoded input vector x,, we can then calculate the
corresponding embedding vector using:

v, = Ex,.

Because x,, has a one-hot encoding, v,, is given by the corresponding
column of the matrix E.

Word2Vec: Continuous bag-of-words and
E skip-grams E

:Qé 7
W

AN

I I I
bl %
3 3
! L

Word2Vec: Continuous bag-of-words and
skip-grams

E.g. v(Paris) = [0.6,53.0,2.4,0.2...]

v(Paris) — v(France) 4+ v(Italy) =~ v(Rome)

35

Tokenization

One limitation of using a fixed word dictionary is its inability to handle
out-of-vocabulary terms or misspelled words, which restricts Flexibility
and robustness in natural language processing tasks.

An alternative approach is to operate at the level of characters.

o The semantic structure of words is lost, making it harder for the
model to capture meaningful linguistic patterns.

e Learning becomes more complex, as neural networks must
reconstruct words from individual characters, increasing the
computational and representational burden.

36

Tokenization

Combining the benefits of character-level and word-level tokenization:

Peter Piper picked a peck of pickled peppers
Peter Piper picked a peck of pickled peppers
Peter Piper picked a peck of pickled peppers
Peter Piper picked a peck of pickled peppers
Peter Piper picked a peck of pickled peppers
Peter Piper picked a peck of pickled peppers

37

Transformer Language Models

Transformers can be used in three modes:

1. Encoder: Converts a sequence of tokens into a single vector, e.g.,
sentiment analysis where text is mapped to a sentiment label such as
happy or sad.

2. Decoder: Generates a sequence of words from a single vector, e.g.,
producing a caption from an image input.

3. Sequence-to-sequence (encoder-decoder): Maps an input sequence
to an output sequence, e.g., translating text between languages.

38

Decoder transformers

Decoder-only transformer models can be used as generative models
that create output sequences of tokens.

An illustrative example is a class of models called GPT which stands for
generative pretrained transformer (Radford et al., 2019; Brown et al.,
2020; OpenAl, 2023).

The goalis to construct an autoregressive model in which the
conditional distributions p (x,, | X, ..., X,_1) are expressed using a
transformer neural network that is learned from data.

39

Decoder transformers

e At each step, the model receives the previous n — 1 tokens as input
and predicts the probability for the next token:

p<xn | > SERED 7Xn—1)

e By sampling from this probability distribution, a new token is chosen
and added to the sequence.

e The updated sequence, now with n tokens, is fed back into the
model to predict the next token (n + 1).

e This generation process repeats, producing one token at a time, until
a specified maximum sequence length is reached.

Decoder transformers: GPT model

AT R e o)

o
o

> & swam
~

across

outputs

positional
encoding
@ T @ river
embedding embedding - - embedding
Iy

t 1

(start) X1 XN

the

(start)
|
swam
across
the

40

41

Sampling strategies

The output of a decoder transformer is a probability distribution over
values For the next token in the sequence, from which a particular value
for that token must be chosen to extend the sequence.

To find the most probable sequence, we would need to maximize the
joint distribution over all tokens, which is given by:

N
p(yisyn) =[P [vis s vu)

n=1

Complexity: O(K™)

42

Sampling strategies

Greedy Search- O(K'N)

e At each step, select the token with the highest probability.
e Forstep n, choose y,, = arg max; p(¥;|Y1s - Yp,_1)

Beam Search- O(BK N)

e Maintains top B candidate sequences, expanding each and keeping the best
scoring ones at every step:

N
p<y17 ayN> - Hp(yn|y17 7yn71>
n=1

The algorithm keeps B sequences with the highest cumulative probability and
normalizes by sequence length.

43

Probability

1
0.8
0.6
0.4
0.2

0

0

Sampling strategies

AHL’

J

0

Timestep

60

: H’ AH'

e Beam Search

e H UMan

Sampling strategies

Random Sampling (Softmax Sampling) - O(K V)

e The next token is selected stochastically using the softmax
distribution over vocabulary probabilities.

ply) = 2l

N Zj exp(aj)

where a; is the logit for token ;.

44

45

Sampling strategies

Top-K Sampling- O(K N)
e Restricts candidates to the & most probable tokens. Samples from

this truncated set.
o Similar to softmax but over top K tokens only:

exp(a;)

ek exp(aj)

pTop-K(?Jz‘) = Z

for 2 in the set of top K.

46

Sampling strategies

Nucleus (Top-p) Sampling- O(N K log K)

e Dynamically chooses the smallest set of top tokens whose
cumulative probability exceeds threshold p. Samples from this set.
o Define set Swhere > . p(y;) = p, then sample among S.

Sampling strategies

Temperature Scaling- O(N K)
e Controls randomness by scaling logits before applying softmax.

 expla,/T)
pT(yz> - Zj exp(aj/T)

e ForT" — O (lower temperature), is more deterministic.

o IFT' =1, is equal to the standard softmax.

ForI' < 1, high-probability tokens are favored.

e ForT' — o0, the distribution becomes uniform across states.

47

48

Encoder transformers

e Encoders takes sequences as input and produce fixed-length vectors,
such as class labels, as output.

e An example of such a model is BERT (Bidirectional Encoder
Representations from Transformers, Devlin et al., 2018).

Bidirectional — the network sees words both before and after the masked word and can
use both sources of information to make a prediction.

e The goal is to pre-train a language model using a large corpus of text
and then to fine-tune the model using transfer learning for a broad
range of downstream tasks each of which requires a smaller
application-specific training data set.

49

Encoder transformers

positional
encoding @
embedding
T T

(class) X1

L layers

50

Encoder transformers

e An encoder model is unable to generate sequences.

e The first token of every input string is given by a special token
(class), and the corresponding output of the model is ignored during
pre-training.

e The model is pre-trained by presenting token sequences at the input.

« Arandomly chosen subset of the tokens, say 15%), are replaced with
a special token denoted (mask).

e The model is trained to predict the missing tokens at the
corresponding output nodes.

Encoder transformers
e For example, an input sequence might be:

| (mask) across the river to get to the (mask) bank.

1

and the network should predict ‘swam’ at output node 2 and ‘other
at output node 10.

e In this case only two of the outputs contribute to the error function
and the other outputs are ignored.

e The linear output transformation could alternatively be replaced
with a more complex differentiable model such as an MLP (e.g. for
token classification).

51

52

Sequence-to-sequence transformers

Combines an encoder and a decoder phases.

Uses a new type of attention called cross-attention
in the decoder section.

7, denotes the output from the encoder section
and determines the key and value vectors for the
cross-attention layer, whereas the query vectors
are determined within the decoder section.

Z

X

(Cooreom

(Coortom

multi-head
cross-attention

)

K V Q

add & norm |+

masked
multi-head
self-attention

53

Sequence-to-sequence transformers

V4
[
[self-attention transformer Iayer]

*
*

[self-attention transformer Iayer]
positional é
encoding

embedding
5

Y creeeeeeeeeeeeeeeeenn,

*

—»[cross-attention transformer Iayer]

*
*

—»[cross-attention transformer Iayer]

-0

embedding
5

X {(start), Yin_ 1} <ceeemessi
" N P
v ~
encoder decoder

Large language models (LLMs)

[Low-rank adaptation - LoRa]

X

N x D

54

Wy

\l

SO\

/

Rx D

+ —

XWjq

XAB

N x D

55

Multimodal Transformers

56

Vision transformers

LSM

learned
positional C]—»
encoding

57

Generative image transformers

X1 X2 X3 X4
x5 | | x7 Xs
x9 | %o | x11 | x12
x13 | e | x15

58

Generative image transformers

Image sampling from an autoregressive model.

The Ffirst pixelis sampled from the marginal distribution p (x;), the second pixel from the
conditional distribution p (X5 | X171), and so on in raster scan order until we have a complete
image.

59

frequency

Audio data

time

60

[Vall-E]

Text-to-speech

synthesized speech

000 ¢

text prompt

tokens discrete

tokenizer

acoustic prompt

Vision and language transformers

_—Interieaved texts and images N — Generated images ——
g 5
i
= 9 Editthe Image
g el (T riy iz Make her an alien
U8 & instruction
ER:
[-
5 Make high quality The common kingfisher (Alcedo
o] 2 image fom eniden's En)E P E
b © £ scribbles and text kingfisher and river kingfisher sitiing
S8 & description on branch
9|
99|
g
3| '
&, Makenigh quaity
g g § imageirompose A woman practices yoga on a o -4
=lZ| & freatures and text cross-legged sport mat
ol description n L
‘
q J \ J
—Text to image task (— Generated images ——————
Spatially Grounded : Fabricate an image of a contemporary kitchen with a refrigerator at
the location (50, 50) -> (100, 100), and stoves at the location (80, 80) -> (200, 200) 3 0
How-to-write : A white sign that says ‘morning”
e —

Image to text tasks Generated text

— ~
- Caption: Describe the given image

A il

A beautiful view of a city from across a river.
A view of tall bulldings in a city. The photo Is
taken from a park across a iver. We can see
abridge over the river.

Long Caption; Describe the given image in very detail
VQA: Question: what time of the day is the photo taken?

= Sunsettime
Reasoning: Question: Does this passage describe the e e T =
weather or the climate? Context: Figure: Des Moines. The A ST EL I R (B 2

of air that surrounds Earth. Both weather and
climate tell you about the atmosphere.

temperature recorded ... Please explain your answer.

