
Transformers

Dr. Alejandro Veloz

Attention

The fundamental concept that underlies a transformer is attention.

I swam across the river to get to the other bank

I swam across the river to get to the other bank

2

Attention

I swam across the river to get to the other bank.

I walked across the road to get cash from the bank.

3

4

Transformer processing

The input data to a transformer is a set of vectors {x𝑛} of

dimensionality 𝐷, where 𝑛 = 1, … , 𝑁.

We refer to these data vectors as tokens:

word within a sentence,

a patch within an image, or

an amino acid within a protein.

The elements 𝑥𝑛𝑖 of the tokens are called features.

Transformers handle heterogeneous data by merging variables into a

unified token set, eliminating the need for specialized architectures.

5

Notation

X

N
(to

ke
ns

)

D (features)

xT
n

Tokens are stored in X of dimensions 𝑁 × 𝐷.

The 𝑛-th row comprises the token vector xT
𝑛, and

where 𝑛 = 1, … , 𝑁 labels the rows.

For most applications, we will require a data set

containing many sets of tokens, such as

independent passages of text where each word is

represented as one token.

6

Transformer Layer

A transformer layer maps an input matrix X to an output matrix X̃ of the

same size:

X̃ = TransformerLayer[X].

Stacking multiple layers yields deep networks that learn complex

representations through trainable parameters optimized by gradient

descent.

Each layer consists of two stages:

An attention mechanism that mixes information (features) across tokens.

A feed-forward stage that transforms features within each token.

7

Attention

Let x1, … , x𝑁 be input tokens in an embedding space.

We aim to map them to a modified representation y1, … , y𝑁, a set of

tokens in a new embedding space with richer semantic structure.

One particular value y𝑛 depends on all the inputs vectors x1, … , x𝑁.

This dependence is stronger for inputs x𝑚 that are particularly

important for determining y𝑛.

8

Attention

A simple way to transform tokens x1, … , x𝑁 into y1, … , y𝑁 is the

linear mapping:

y𝑛 =
𝑁

∑
𝑚=1

𝑎𝑛𝑚x𝑚

where 𝑎𝑛𝑚 are called attention weights.

9

Attention weights considerations

1. The coefficients should be close to zero for input tokens that have

little influence on the output y𝑛 and largest for inputs that have

most influence.

2. We therefore constrain the coefficients to be non-negative to avoid

situations in which one coefficient can become large and positive

while another coefficient compensates by becoming large and

negative.

3. We also want to ensure that if an output pays more attention to a

particular input, this will be at the expense of paying less attention to

the other inputs, and so we constrain the coefficients to sum to unity.

10

Attention weights contraints
The weighting coefficients must satisfy the following two constraints:

𝑎𝑛𝑚 ⩾ 0
𝑁

∑
𝑚=1

𝑎𝑛𝑚 = 1

Together these imply that each coefficient lies in the range 0 ⩽ 𝑎𝑛𝑚 ⩽ 1 and so

the coefficients define a partition of unity.

If 𝑎𝑚𝑚 = 1, it follows that 𝑎𝑛𝑚 = 0 for 𝑛 ≠ 𝑚, and therefore y𝑚 = x𝑚 (the

input vector is unchanged).

More generally, the output y𝑚 is a blend of the input vectors with some inputs

given more weight than others.

11

Self-attention

𝑎𝑛𝑚 = exp (xT
𝑛x𝑚)

∑𝑁
𝑚′=1 exp (xT

𝑛x𝑚′)
In matrix notation:

Y = Softmax [XXT] X

where Softmax[L] is an operator that takes the exponential of every
element of a matrix L and then normalizes each row independently to

sum to one.

12

Introducing network parameters
Self-attention – no learnable parameters.

Features within a token x𝑛 plays an equal role in determining the

attention coefficients.

We would like the network to have the flexibility to focus more on

some features than others when determining token similarity.

We can address both issues if we define modified feature vectors given

by the linear transformation:

X̃ = XU
where U is a 𝐷 × 𝐷 matrix of learnable weight parameters (analogous
to a layer in a standard neural network).

13

Introducing network parameters
This gives a modified transformation:

Y = Softmax [XUUTXT] XU

Although this has much more flexibility, the matrix:

XUUTXT

is symmetric.

E.g. ‘cat’ is equally associated with ‘pet’, as ‘pet’ with ‘cat’.

The softmax function is the sole mechanism responsible for introducing

asymmetry into the attention weight matrix.
14

Introducing network parameters
To support asymmetric attention (e.g. cat → pet strong, pet → cat less

strong), we can allow the query, key, and value matrices each having their

own independent linear transformations.

Y = Softmax [XU UTXT] XU

= Softmax [XW(q) (XW(k))T] XW(v)

= Softmax [Q KT] V

The weight matrices W(q), W(k) and W(v) represent learnable parameters.

W(q), W(k) are of dimension 𝐷 × 𝐷k, whereas W(v) is of dimension 𝐷 × 𝐷v.

Multiple transformer layers can be stacked on top of each other if each layer has

the same dimensionality.

15

Attention layer

Y = Softmax [XW(q) (XW(k))T] XW(v) = Softmax [Q KT] V

× W(q)

D ×D

= Q

N ×D

W(k)

D ×D

= K

N ×D

×

QKT

N ×N

X

N ×D

16

Attention layer

Y = Softmax [XW(q) (XW(k))T] XW(v) = Softmax [Q KT] V

Y

N ×Dv

= Softmax QKT

N ×N

×

N ×Dv

V

16

Scaled dot-product self-attention layer

Y = Attention (Q, K, V)

= Softmax[Q KT

√𝐷k

] V

X

W(k)W(q) W(v)

KQ V

mat mul

scale

softmax

mat mul

Y

17

Scaled dot-product self-attention layer

Require: Set of tokens X ∈ ℝ𝑁×𝐷 ∶ {x1, … , x𝑁}
Weight matrices {W(q), W(k)} ∈ ℝ𝐷×𝐷k and W(v) ∈ ℝ𝐷×𝐷v

Ensure: Attention (Q, K, V) ∈ ℝ𝑁×𝐷v ∶ {y1, … , y𝑁}
1: Q = XW(q) compute queries Q ∈ ℝ𝑁×𝐷k

2: K = XW(k) compute keys K ∈ ℝ𝑁×𝐷k

3: V = XW(v) compute values V ∈ ℝ𝑁×𝐷

4: return

Attention (Q, K, V) = Softmax[QKT

√𝐷k

] V

18

Multi-Head Attention

The attention layer allows the output vectors to attend to patterns

of input vectors and is called an attention head.

However, there might be multiple patterns of attention that are

relevant at the same time.

Using a single attention head can lead to averaging over these

effects. Instead, we use multiple attention heads in parallel.

Identically structured copies of a single head, with independent learnable

parameters for the query, key, and value matrices.

Analogous to using multiple different filters in each layer of a convolutional

network.

19

Multi-Head Attention
Consider 𝐻 heads indexed by ℎ = 1, … , 𝐻:

Hℎ = Attention (Qℎ, Kℎ, Vℎ)

where Attention(⋅, ⋅, ⋅) is the scaled self-attention function, and each

head has separate projection matrices:

Qℎ = XW(q)
ℎ

Kℎ = XW(k)
ℎ

Vℎ = XW(v)
ℎ

20

Multi-Head Attention
The combined combined output is:

Y(X) = Concat [H1, … , H𝐻] W(o)

The heads are first

concatenated into a single

matrix, and the result is

then linearly transformed

using a matrix W(o)

N ×HDv

H1 H2
... HH × W(o)

HDv ×D

= Y

N ×D

21

Multi-Head Attention

Require: Set of tokens X ∈ ℝ𝑁×𝐷 ∶ {x1, … , x𝑁}
Query weight matrices {W(q)

1 , … , W(q)
𝐻 } ∈ ℝ𝐷×𝐷

Key weight matrices {W(k)
1 , … , W(k)

𝐻 } ∈ ℝ𝐷×𝐷

Value weight matrices {W(v)
1 , … , W(v)

𝐻 } ∈ ℝ𝐷×𝐷v

Output weight matrix W(o) ∈ ℝ𝐻𝐷v×𝐷

Ensure: Y ∈ ℝ𝑁×𝐷 ∶ {y1, … , x𝑁}
// compute self-attention for each head

1: for ℎ = 1 to 𝐻 do

2: Qℎ = XW(q)
ℎ , Kℎ = XW(k)

ℎ , Vℎ = XW(v)
ℎ

3: Hℎ = Attention (Qℎ, Kℎ, Vℎ) // Hℎ ∈ ℝ𝑁×𝐷v

4: end for

5: H = Concat [H1, … , HN] // concatenate heads

6: return Y(X) = HW(o)

22

Multi-Head Attention

X

self-attentionself-attention ... self-attention

concat

linear

Y

23

Transformer layer

X

multi-head
self-attention

add & norm

MLP

add & norm

X̃

Z

Y(X) = Concat [H1, … , H𝐻] W(o)

Z = LayerNorm [Y(X) + X]
pre-norm

Z = Y (X′) + X, where X′ = LayerNorm [X]

X̃ = LayerNorm[MLP[Z] + Z]
pre-norm

X̃ = MLP (Z′) + Z, where Z′ = LayerNorm[Z]

In a typical transformer there are multiple such layers

stacked on top of each other.

The layers generally have identical structures, although there

is no sharing of weights and biases between different layers.
24

Transformer layer

Require: Set of tokens X ∈ ℝ𝑁×𝐷 ∶ {x1, … , x𝑁}
Multi-head self-attention layer parameters

Feed-forward network parameters

Ensure: X̃ ∈ ℝ𝑁×𝐷 ∶ { ̃x1, … , ̃x𝑁}
1: Z = LayerNorm[Y(X) + X] // Y(X) from multi-head attention algorithm

2: X̃ = LayerNorm[MLP[Z] + Z] // shared neural network return ̃X
3: return X̃

25

Positional encoding

The matrices W(q)
ℎ , W(k)

ℎ , and W(v)
ℎ are shared across the input

tokens.

A transformer is equivariant with respect to input permutations.

Permuting the order of the input tokens, i.e., the rows of X, results in

the same permutation of the rows of the output matrix X̃.

The representation learned by a transformer will be independent of the

input token ordering.

’The food was bad, not good at all’ and ’The food was good, not bad at all’ contain the

same tokens but different meanings because of the different token ordering.

26

Positional encoding

The sharing of parameters in the network architecture facilitates the

massively parallel processing of the transformer.

Also allows the network to learn long-range dependencies just as

effectively as short-range dependencies.

However, the lack of dependence on token order becomes a major

limitation when we consider sequential data (e.g. words in NLP).

27

Positional encoding

Strategy: to retain the powerful properties of the attention layers, the

token order is encoded in the data itself instead of changing the network

architecture.

Solution: Position encoding vector r𝑛 associated with each input position

𝑛 and then combine this with the associated input token embedding x𝑛.

We can add the position vectors onto the token vectors to give:

̃x𝑛 = x𝑛 + r𝑛

28

Positional encoding
For a given position 𝑛 the

associated

position-encoding vector

has components 𝑟𝑛𝑖 given
by (Vaswani et al. 2017):

𝑟𝑛𝑖 =

⎧{{
⎨{{⎩

sin (𝑛
𝐿𝑖/𝐷) ,

if 𝑖 is even
cos (𝑛

𝐿(𝑖−1)/𝐷) ,
if 𝑖 is odd

r6 r5 r4 r3 r2 r1

embedding dimension

n

m

po
si

tio
n

embedding dimension

po
si

tio
n

−1

0

1

29

Natural Language Processing (NLP)

30

Word embedding
The first challenge is to convert the words into a numerical

representation that is suitable for use as the input to a deep neural

network.

One simple approach is to define a fixed dictionary of words and then

introduce vectors of length equal to the size of the dictionary along with

a one hot representation for each word.

The kth word in the dictionary is encoded with a vector having a 1 in

position k and 0 in all other positions.

For example if aardwolf is the third word in our dictionary then its vector
representation would be (0, 0, 1, 0, … , 0).

31

Word embedding

The embedding process can be defined by a matrix E of size 𝐷 × 𝐾
where 𝐷 is the dimensionality of the embedding space and 𝐾 is the

dimensionality of the dictionary.

For each one-hot encoded input vector x𝑛 we can then calculate the

corresponding embedding vector using:

v𝑛 = Ex𝑛.

Because x𝑛 has a one-hot encoding, v𝑛 is given by the corresponding

column of the matrix E.

32

Word2Vec: Continuous bag-of-words and

skip-grams

xn−2

xn−1

xn+1

xn+2

v

xn

xn−2

xn−1

xn+1

xn+2

v

xn

33

Word2Vec: Continuous bag-of-words and

skip-grams

E.g. v(Paris) = [0.6, 53.0, 2.4, 0.2 …]

v(Paris) − v(France) + v(Italy) ≃ v(Rome)

34

Tokenization

One limitation of using a fixed word dictionary is its inability to handle

out-of-vocabulary terms or misspelled words, which restricts flexibility

and robustness in natural language processing tasks.

An alternative approach is to operate at the level of characters.

The semantic structure of words is lost, making it harder for the

model to capture meaningful linguistic patterns.

Learning becomes more complex, as neural networks must

reconstruct words from individual characters, increasing the

computational and representational burden.

35

Tokenization

Combining the benefits of character-level and word-level tokenization:

Peter Piper picked a peck of pickled peppers

Peter Piper picked a peck of pickled peppers

Peter Piper picked a peck of pickled peppers

Peter Piper picked a peck of pickled peppers
Peter Piper picked a peck of pickled peppers
Peter Piper picked a peck of pickled peppers

36

Transformer Language Models

Transformers can be used in three modes:

1. Encoder: Converts a sequence of tokens into a single vector, e.g.,

sentiment analysis where text is mapped to a sentiment label such as

happy or sad.

2. Decoder: Generates a sequence of words from a single vector, e.g.,

producing a caption from an image input.

3. Sequence-to-sequence (encoder-decoder): Maps an input sequence

to an output sequence, e.g., translating text between languages.

37

Decoder transformers

Decoder-only transformer models can be used as generative models

that create output sequences of tokens.

An illustrative example is a class of models called GPT which stands for

generative pretrained transformer (Radford et al., 2019; Brown et al.,

2020; OpenAI, 2023).

The goal is to construct an autoregressive model in which the

conditional distributions 𝑝 (x𝑛 ∣ x1, … , x𝑛−1) are expressed using a

transformer neural network that is learned from data.

38

Decoder transformers

At each step, the model receives the previous 𝑛 − 1 tokens as input

and predicts the probability for the next token:

𝑝(x𝑛 ∣ x1, … , x𝑛−1)

By sampling from this probability distribution, a new token is chosen

and added to the sequence.

The updated sequence, now with 𝑛 tokens, is fed back into the

model to predict the next token (𝑛 + 1).
This generation process repeats, producing one token at a time, until

a specified maximum sequence length is reached.

39

Decoder transformers: GPT model

40

Sampling strategies

The output of a decoder transformer is a probability distribution over

values for the next token in the sequence, from which a particular value

for that token must be chosen to extend the sequence.

To find the most probable sequence, we would need to maximize the

joint distribution over all tokens, which is given by:

𝑝 (y1, … , y𝑁) =
𝑁

∏
𝑛=1

𝑝 (y𝑛 ∣ y1, … , y𝑛−1)

Complexity: O(𝐾𝑁)
41

Sampling strategies
Greedy Search –O(𝐾𝑁)

At each step, select the token with the highest probability.

For step 𝑛, choose 𝑦𝑛 = argmax𝑖 𝑝(𝑦𝑖|𝑦1, … , 𝑦𝑛−1)

Beam Search –O(𝐵𝐾𝑁)
Maintains top 𝐵 candidate sequences, expanding each and keeping the best

scoring ones at every step:

𝑝(𝑦1, … , 𝑦𝑁) =
𝑁

∏
𝑛=1

𝑝(𝑦𝑛|𝑦1, … , 𝑦𝑛−1)

The algorithm keeps 𝐵 sequences with the highest cumulative probability and

normalizes by sequence length.

42

Sampling strategies

43

Sampling strategies

Random Sampling (Softmax Sampling) –O(𝐾𝑁)
The next token is selected stochastically using the softmax

distribution over vocabulary probabilities.

𝑝(𝑦𝑖) = exp(𝑎𝑖)
∑𝑗 exp(𝑎𝑗)

where 𝑎𝑗 is the logit for token 𝑗.

44

Sampling strategies

Top-K Sampling –O(𝐾𝑁)
Restricts candidates to the 𝐾 most probable tokens. Samples from

this truncated set.

Similar to softmax but over top 𝐾 tokens only:

𝑝Top-K(𝑦𝑖) = exp(𝑎𝑖)
∑𝑗∈𝐾 exp(𝑎𝑗)

for 𝑖 in the set of top 𝐾.

45

Sampling strategies

Nucleus (Top-p) Sampling –O(𝑁𝐾 log𝐾)
Dynamically chooses the smallest set of top tokens whose

cumulative probability exceeds threshold 𝑝. Samples from this set.

Define set 𝑆 where ∑𝑖∈𝑆 𝑝(𝑦𝑖) ≥ 𝑝, then sample among 𝑆.

46

Sampling strategies

Temperature Scaling –O(𝑁𝐾)
Controls randomness by scaling logits before applying softmax.

𝑝𝑇(𝑦𝑖) = exp(𝑎𝑖/𝑇)
∑𝑗 exp(𝑎𝑗/𝑇)

For 𝑇 → 0 (lower temperature), is more deterministic.

If 𝑇 = 1, is equal to the standard softmax.

For 𝑇 < 1, high-probability tokens are favored.
For 𝑇 → ∞, the distribution becomes uniform across states.

47

Encoder transformers
Encoders takes sequences as input and produce fixed-length vectors,

such as class labels, as output.

An example of such a model is BERT (Bidirectional Encoder

Representations from Transformers, Devlin et al., 2018).

Bidirectional – the network sees words both before and after the masked word and can

use both sources of information to make a prediction.

The goal is to pre-train a language model using a large corpus of text

and then to fine-tune the model using transfer learning for a broad

range of downstream tasks each of which requires a smaller

application-specific training data set.

48

Encoder transformers

49

Encoder transformers

An encoder model is unable to generate sequences.

The first token of every input string is given by a special token

⟨class⟩, and the corresponding output of the model is ignored during

pre-training.

The model is pre-trained by presenting token sequences at the input.

A randomly chosen subset of the tokens, say 15%, are replaced with

a special token denoted ⟨mask⟩.
The model is trained to predict the missing tokens at the

corresponding output nodes.

50

Encoder transformers
For example, an input sequence might be:

I ⟨mask⟩ across the river to get to the ⟨mask⟩ bank.
and the network should predict ‘swam’ at output node 2 and ‘other’

at output node 10.

In this case only two of the outputs contribute to the error function

and the other outputs are ignored.

The linear output transformation could alternatively be replaced

with a more complex differentiable model such as an MLP (e.g. for

token classification).

51

Sequence-to-sequence transformers
Combines an encoder and a decoder phases.

Uses a new type of attention called cross-attention

in the decoder section.

Z denotes the output from the encoder section

and determines the key and value vectors for the

cross-attention layer, whereas the query vectors

are determined within the decoder section.

X

masked
multi-head

self-attention

add & norm

multi-head
cross-attention

add & norm

MLP

add & norm

X̃

Z
K V Q

52

Sequence-to-sequence transformers

X

embedding

+

self-attention transformer layer

...

self-attention transformer layer

cross-attention transformer layer

...

cross-attention transformer layer

LSM

YN

+

embedding

{⟨start⟩, Y1:N−1}

Z

positional
encoding

encoder decoder53

Large language models (LLMs)

[Low-rank adaptation - LoRa]

× W0

D ×D

A

D ×R

× B

R×D

×

+

XW0

+

XAB

N ×D

X

N ×D

54

Multimodal Transformers

55

Vision transformers

⟨class⟩ flatten flatten

embedding embedding embedding... ...

+ + +
learned

positional
encoding

transformer encoder

LSM

c

56

Generative image transformers

𝑝 (x1, … , x𝑁) =
𝑁

∏
𝑛=1

𝑝 (x𝑛 ∣ x1, … , x𝑛−1)
x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16

57

Generative image transformers

Image sampling from an autoregressive model.

The first pixel is sampled from the marginal distribution 𝑝 (x11), the second pixel from the

conditional distribution 𝑝 (x12 ∣ x11), and so on in raster scan order until we have a complete

image.

58

Audio data

time

fre
qu

en
cy

59

Text-to-speech
[Vall-E]

transformer

text prompt
tokens discrete

tokenizer

acoustic prompt

audio decoder

synthesized speech

60

Vision and language transformers

61

