Transformers and GPT models

GPT Capabilities

Text generation
Question answering
Language translation
Summarization
Code generation

e ... audio, images

Considerations:

* Ethical concerns: Bias, misinformation
« Computational resources: Training large models is expensive
« Limitations: Lack of true understanding, potential for errors

Let’s train our own GPT model

>> python run.py preprocess
The corpus has 142 unique tokens.
SUCCESS

>> python run.py train

Initializing a new model.
to be optimized:

Parameters

10:
10:
10:
10:
10:
10:
10:
:20:
:07
: 28
:50

10

10:
:23
: 24

10
10

10
11
13

15:
16:
17:

19

22

: 27
: 56
:49

12
35
58

: 20

477

step
step
step
step
step
step
step
step
step
step
step

0: train loss 4.9567,
train loss 0.1477,
.1291,
.1191,
.1167,
.1106,
.1105,
.1099,
.1095,
.1105,
.1085,

500:

1000:
1500:
2000 :
2500 :
3000:
3500:
4000:
4500:
4999 :

train
train
train
train
train
train
train
train
train

loss
loss
loss
loss
loss
loss
loss
loss
loss

4790926

oNoNololoNoNoNoN®)

valid
valid
valid
valid
valid
valid
valid
valid
valid

loss
loss
loss
loss
loss
loss
loss
loss
loss

A JOYOYOYOYOY O U

Let’s train our own GPT model

valid loss 4.9876

valid loss 5.2037
.8455
.1366
.5854
.6639
. 7045
.8777
.8912
.3837
.8775

Let’s train our own GPT model

>> python run.py train --update

Let’s train our own GPT model

>> python run.py chat

FLAIR Example 1: Tag Entities in Text

» Let’s run named entity recognition (NER) over the following example sentence: “I love Berlin and New
York.”

* Our goal is to identify names in this sentence, and their types.

« To do this, all you need is to make a Sentence for this text, load a pre-trained model and use it to predict
tags for the sentence:

from flair.data import Sentence

from flair.nn import Classifier

sentence = Sentence('I love Berlin and New York.'")
tagger = Classifier.load('ner'")

tagger.predict (sentence)

print (sentence)
Sentence[7]: "I love Berlin and New York." - ["Berlin"/LOC, "New York"/LOC]

The output shows that both “Berlin” and “New York” were tagged as location entities (LOC) in this
sentence.

FLAIR Example 2: Detect Sentiment

Let’s run sentiment analysis over the same sentence to determine whether it is POSITIVE or
NEGATIVE.

You can do this with essentially the same code as above. Just instead of loading the ‘ner’ model,
you now load the ‘sentiment’ model:

from flair.data import Sentence
from flair.nn import Classifier

sentence = Sentence('I love Berlin and New York.'")
tagger = Classifier.load('sentiment')
tagger.predict (sentence)

print (sentence)
Sentence[7]: "I love Berlin and New York." - POSITIVE (0.9982)

Tagging parts-of-speech

Syntax is fundamentally language-specific, so each language has different fine-grained
parts-of-speech. Flair offers models for many languages:

... in English

from flair.nn import Classifier

from flair.data import Sentence

tagger = Classifier.load('pos')

sentence = Sentence('Dirk went to the store.')
tagger.predict (sentence)

print (sentence)

Sentence [6] : "Dirk went to the store." - ["Dirk"/NNP, "went"/VBD, "to"/IN, "the"/DT,
"store" /NN, "."/.]

“Dirk” is a proper noun (tag: NNP), and “went” is a past tense verb (tag: VBD).

... In German

from flair.nn import Classifier
from flair.data import Sentence

load the model

tagger = Classifier.load('de-pos')

make a sentence

sentence = Sentence('Dort hatte er einen Hut gekauft.')
predict NER tags

tagger.predict (sentence)

print sentence with predicted tags

print (sentence)

Sentence[7] : "Dort hatte er einen Hut gekauft." -
["Dort"/ADV, "hatte"/VAFIN, "er"/PPER, "einen"/ART,
"Hut" /NN, "gekauft"/vvpp, "."/S.]

... In UKrainian

from flair.nn import Classifier
from flair.data import Sentence

load the model

tagger = Classifier.load('pos-ukrainian')

make a sentence

sentence = Sentence("CooromHl B 3HaMm’' gHII1 IPOXMBATH
Hamaoky noera — ponmHa lxkomm.")

predict NER tags

tagger.predict (sentence)

print sentence with predicted tags

print (sentence)

... In Arabic

from flair.nn import Classifier
from flair.data import Sentence

load the model
tagger = Classifier.locad('ar-pos')
make a sentence

sentence = Sentence ('aclwoll _wludl >Laio\ 3biwwl dle 9,0c
6,@JL &S, 0Vl deslR 9 L)

predict NER tags

tagger.predict (sentence)

print sentence with predicted tags

print (sentence)

Tagging universal parts-of-speech (UPoS)

Universal parts-of-speech are a set of minimal syntactic units that exist across languages.
For instance, most languages will have VERBs or NOUNSs.

FLAIR was trained over 14 langages to tag upos in multilingual text.

from flair.nn import Classifier
from flair.data import Sentence

tagger = Classifier.load('pos-multi')

sentence = Sentence ('George Washington went to Washington. Dort kaufte er einen Hut.')

tagger.predict (sentence)

print (sentence)

Sentence: "George Washington went to Washington . Dort kaufte er einen Hut .
- ["George"/PROPN, "Washington"/PROPN, "went"/VERB, "to"/ADP, "Washington"/PROPN, "."/PUNCT]
- ["Dort"/ADV, "kaufte"/VERB, "er"/PRON, "einen"/DET, "Hut"/NOUN, "."/PUNCT]

List of POS Models

Task Language Training Accuracy Contributor
Dataset / Notes

POS-tagging English Ontonotes 98.19
(Accuracy)
‘pos-fast’ POS-tagging English Ontonotes 98.1 (fast model)
(Accuracy)
‘upos’ POS-tagging English Ontonotes 98.6
(universal) (Accuracy)
‘upos-fast’ POS-tagging English Ontonotes 98.47 (fast model)
(universal) (Accuracy)
‘pos-multi’ POS-tagging Multilingual UD 96.41 (12
Treebanks (average languages)

acc.)

https://huggingface.co/flair/pos-english
https://huggingface.co/flair/pos-english-fast
https://huggingface.co/flair/upos-english
https://huggingface.co/flair/upos-english-fast
https://huggingface.co/flair/upos-multi

List of POS Models

Task Language Training Accuracy Contributor
Dataset / Notes

‘da-pos’ POS-tagging Danish Danish AmaliePauli
Dependency
Treebank
‘pt-pos-clinic POS-tagging Portuguese PUCPR 92.39 LucasFerroH
al’ AlLab for
clinical texts

‘pos-ukrainia POS-tagging Ukrainian Ukrainian UD 97.93 (F1) dchaplinsky

V4

n

https://github.com/UniversalDependencies/UD_Danish-DDT/blob/master/README.md
https://github.com/UniversalDependencies/UD_Danish-DDT/blob/master/README.md
https://github.com/UniversalDependencies/UD_Danish-DDT/blob/master/README.md
https://github.com/AmaliePauli
https://github.com/HAILab-PUCPR/portuguese-clinical-pos-tagger
https://github.com/LucasFerroHAILab
https://github.com/LucasFerroHAILab
https://huggingface.co/dchaplinsky/flair-uk-pos
https://huggingface.co/dchaplinsky/flair-uk-pos
https://universaldependencies.org/treebanks/uk_iu/index.html
https://github.com/dchaplinsky

Classic Word Embeddings

Classic word embeddings are static and word-level.

« Each distinct word gets exactly one pre-computed embedding.
* Most embeddings fall under this class, including the popular GloVe or Komninos embeddings (e.g. Wikipedia).

from flair.embeddings import WordEmbeddings

glove embedding = WordEmbeddings ('glove')
sentence = Sentence('The grass is green .'")
glove embedding.embed (sentence)

for token in sentence:

print (token)
print (token.embedding)

This prints out the tokens and their embeddings. GloVe embeddings are Pytorch vectors of dimensionality 100.

‘en-glove’ (or ‘glove’) English GloVe embeddings

‘en-extvec’ (or ‘extvec’) English Komninos embeddings

‘en-crawl!’ (or ‘crawl’) English FastText embeddings over
Web crawls

‘en-twitter’ (or ‘twitter’) English Twitter embeddings

‘en’ (or ‘en-news’ or English FastText embeddings over

‘news’) news and wikipedia data

‘de’ German German FastText
embeddings

“fr’ French French FastText
embeddings

‘es’ Spanish Spanish FastText

embeddings

Custom embeddings

» Loading Gensim embeddings:

custom embedding = WordEmbeddings ('path/to/your/custom/embeddings.gensim')

« Converting FastText embeddings to Gensim:

import gensim
word vectors = gensim.models.KeyedVectors.load word2vec format ('/path/to/embeddings.txt', binary=False)
word vectors.save('/path/to/converted’)

 However, FastText embeddings have the functionality of returning vectors for
out of vocabulary words using the sub-word information.

Prompts engineering, multimodal
learning, and LLMs

Alejandro Veloz

What is a prompt?

A prompt is a specific input or instruction given to an Al model
to elicit a desired response or output.

* |t serves as a starting point for the Al to generate text, answer
guestions, or perform tasks. Prompts can range from simple
guestions to complex scenarios or instructions.

How prompts are fed into OpenAl tools

* OpenAl tools, such as GPT-3 or ChatGPT, process prompts
through their APl or user interface.

* General workflow:

User inputs a prompt

The prompt is tokenized and encoded

The encoded prompt is fed into the Al model

The model generates a response based on its training
The response is decoded and presented to the user

a &~ wbdh-=

Types of prompts

There are several types of prompts, including:

1.

oSO R OD

Open-ended: General questions or statements that allow for
diverse responses

Instructional: Specific directions for the Al to follow
Context-based: Prompts that provide background information
Role-playing: Asking the Al to assume a particular persona
Completion: Partial sentences or ideas for the Al to finish
Creative: Prompts designhed to generate imaginative content

Models overview

Ty p e S Of m o d e I S The OpenAl APl is powered by a diverse set of models with different capabilities and price

points. You can also make customizations to our models for your specific use case with

There are several types of
models, including:

Our high-intelligence flagship model for complex, multi-step tasks
Our affordable and intelligent small model for fast, lightweight tasks

Language models trained with reinforcement learning to perform
complex reasoning.

The previous set of high-intelligence models
A fast, inexpensive model for simple tasks

A model that can generate and edit images given a natural language
prompt

A set of models that can convert text into natural sounding spoken
audio

A model that can convert audio into text

Examples of prompts (user message)

const response = await openai.chat.completions.create ({
model: "gpt-4o",
messages: |
"role": "user",
"content": [
lltypell . llteXt 1 ,
"text": "Write a haiku about programming."

Examples of prompts (system messages)

const response = await openai.chat.completions.create ({
model: "gpt-4o",
messages: [

{

"role": "system",
"content": [
llt-ypell : Iltextll ,
"text":

You are a helpful assistant that answers programming questions
in the style of a southern belle from the southeast United States.

~

]
b
{

"role": "user",
"content": [
llt-ypell : Iltextll ,
"text": "Are semicolons optional in JavaScript?"

Examples of prompts (assistant messages)

Capture the results of a previous text generation result, and making a new request based on that.

They can also be used to provide examples to the model for how it should respond to the current
request - a technigue known as few-shot learning.

const response = await openai.chat.completions.create ({
model: "gpt-4o0",
messages: [

"role": "user",

"content": [{ "type":

"role": "assistant!",

"content": [{ "type":

"role": "user",

"content": [{ "type":

"text",

"text",

"text",

"text":

"text":

"text":

"knock knock." }]

"Who's there?" }]

"Orange." }]

How ChatGPT was trained

ChatGPT was trained using a method called Reinforcement
Learning from Human Feedback (RLHF). The process involved:

1.
2.

3.

Pretraining: Learning from a large corpus of internet text

Fine-tuning: Using supervised learning on human-written
conversations

Reward modeling: Training a reward model based on human
preferences

Reinforcement learning: Optimizing the model’s responses
using the reward model

Can ChatGPT learn more from our data?

ChatGPT’s base model doesn’t learn from individual interactions.

However, OpenAl has introduced features like:

* Fine-tuning: Allowing organizations to customize the model
on their data

* GPT-4 with retrieval: Enabling the model to access and use
external knowledge bases

 ChatGPT plugins: Extending the model’s capabilities through
third-party integrations

Can ChatGPT learn more from our data?

At a high level, fine-tuning involves the following steps:
1. Prepare and upload training data
2. Train a new fine-tuned model
3. Evaluate results and go back to step 1 if needed
4. Use your fine-tuned model

Once a model has been fine-tuned, you won’t need to provide
as many examples in the prompt. This saves costs and enables
lower-latency requests.

Which models can be fine-tuned?

Fine-tuning is currently available for the following models:
e gpt-40-2024-08-06

* gpt-40-mini-2024-07-18

* gpt-4-0613

e gpt-3.5-turbo-0125

 gpt-3.5-turbo-1106

e gpt-3.5-turbo-0613

You can also fine-tune a fine-tuned model, which is useful if you
acquire additional data and don’t want to repeat the previous training
steps.

Example data format for fine-tuning

{"messages": [{"role": "system", "content": "Marv is a
factual chatbot that is also sarcastic."}, {"role": "user",
"content": "What's the capital of France?"}, {"role":
"assistant", "content": "Paris, as 1f everyone doesn't know
that already."}]1}

{"messages": [{"role": "system", "content": "Marv is a
factual chatbot that is also sarcastic."}, {"role": "user",
"content": "Who wrote 'Romeo and Juliet'?"}, {"role":
"assistant", "content": "Oh, just some guy named William
Shakespeare. Ever heard of him?"}]}

{"messages": [{"role": "system", "content": "Marv is a
factual chatbot that is also sarcastic."}, {"role": "user",
"content": "How far is the Moon from Earth?"}, {"role":
"assistant", "content": "Around 384,400 kilometers. Give or

take a few, like that really matters."}]}

Perform fine-tuning

from openail import OpenAl
client = OpenAlI ()

client.fine tuning.jobs.create
training file="file-abcl23",
model="gpt-40-mini-2024-07-18"

Using a fine-tuned model

from openal import OpenAl
client = OpenAI ()

completion = client.chat.completions.create
model="ft:gpt-4o0-mini:my-org:custom suffix:id",
messages= |

{"role": "system", "content": "You are a
helpful assistant."},
{"role": "user", "content": "Hello!"}

]
)

print (completion.choices[0] .message)

Analyzing a fine-tuned model

"object": "fine tuning.job.event",

"id": "ftevent-abc-123",

"created at": 1693582679,

"level": "info",

"message": "Step 300/300: training loss=0.15, validation loss=0.27, full
validation loss=0.40",

"data":

"step": 300,

"train loss": 0.14991648495197296,

"valid loss": 0.26569826706596045,

"total steps": 300,

"full valid loss": 0.4032616495084362,

"train mean token accuracy": 0.9444444179534912,
"valid mean token accuracy": 0.9565217391304348,
"full valid mean token accuracy": 0.9089635854341737

}

"type": "metrics"

Integrating LLMs in everyday life

Large Language Models (LLMs) are being integrated into various
aspects of daily life:

Personal assistants: Enhancing digital assistants like Siri or
Alexa

Content creation: Assisting in writing, coding, and creative
tasks

Education: Providing personalized tutoring and explanations
Customer service: Powering chatbots and support systems

Research and analysis: Aiding in data interpretation and
summarization

But life is multimodal

While text-based LLMs are powerful, human experience and
interaction involve multiple senses and forms of data.

This realization has led to the development of multimodal Al

systems that can process and generate various types of
information.

What is multimodal data?

Multimodal data refers to information presented in multiple forms or
“modalities.” Common modalities include:

* Text

* |mages

* Audio

* Video

* Numerical data
* Sensor readings

Multimodal data provides a richer, more comprehensive representation of
information, mimicking how humans perceive and interact with the world.

Can ChatGPT-type models learn multimodal data?

Yes, ChatGPT-type models can be adapted to learn multimodal
data. Recent developments include:

* GPT-4: Capable of processing both text and images
* DALL-E: Generating images from text descriptions
* Whisper: Transcribing and translating audio to text

These advancements demonstrate the potential for LLMs to
handle diverse data types.

Examples of prompts
from openal import OpenAl (images)

client = OpenAI()

response = client.chat.completions.create VVhatisiniiﬂsinnage?
model="gpt-40-mini",
messages= [
"role": "user",
"content": |
}"type": "text", "text": "What’s in this image?"},
"type": "image url",
"image url":
"url": "https://upload.wikimedia.org/...walk.jpg",

1,

max tokens=300,

)

print (response.choices [0])

import base64
from openai import OpenAl

client = OpenAI ()

Function to encode the image
def encode image (image path) :

with open(image path, "rb") as image file: E m I f m t
return base64.b64encode (image file.read()) .decode('utf-8") Xa p eS O p rO p S
Path to your image

image path - "path to your image.jpg" (Iocal |mage5)

Getting the base64 string
base64 image = encode image (image path)

response = client.chat.completions.create
model="gpt-4o0-mini",
messages= [.. ..
What is in this image?
"role": "user",
"c?ntent": [
|Itype|l . |Itext|| ,
"text": "What is in this image?",
1
{ .
"type": "image url",
"image url":
"url"™: f'data:image/jpeg;base64, {base64 image}"

print (response.choices[0])

from openai import OpenAl

client = OpenAI()

response = client.chat.completions.create (
model="gpt-40-mini",
messages= [

| zsier: ruser Examples of

"content": [

{ .
reyper: veexct, prompts (multiple

"What are in these images? Is there any difference
between them?",

} images)

"type": "image url",
"image url": {
"url": "https://upload.wikimedia...-boardwalk.jpg",

j
%' What is in this image?

"type": "image url",
"image url": {
"url": "https://upload.wikimedia.or...dwalk.jpg",

1,

max tokens=300,
)

print (response.choices [0])

Examples of prompts (low/high fidelity image
What is in this image? un d e rSta N d | ng)

from openai import OpenAl

client = OpenAI()

response = client.chat.completions.create (
model="gpt-4o0o-mini",
messages= [

"role": "user",
"content": [
"type": "text", "text": "What’s in this image?"},
"type": "image url",
"image url": {
"url':

"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nat
ure-boardwalk. jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
ndetail": "high™"

max tokens=300,

)

print (response.choices [0] .message.content)

Choosing low/high fidelity image understanding
modes

By controlling the detail parameter, which has three options, low, high, or auto, you
have control over how the model processes the image and generates its textual
understanding.

By default, the model will use the auto setting which will look at the image input
size and decide if it should use the low or high setting.

* low will enable the “low res” mode. The model will receive a low-res 512px x
512px version of the image, and represent the image with a budget of 85
tokens. This allows the API to return faster responses and consume fewer input

tokens for use cases that do not require high detail.

* high will enable “high res” mode, which first allows the model to first see the
low res image (using 85 tokens) and then creates detailed crops using 170
tokens for each 512px x 512px tile.

Prompts - limitations

Medical images: The model is not suitable for interpreting specialized medical images like CT scans
and shouldn’t be used for medical advice.

Non-English: The model may not perform optimally when handling images with text of non-Latin
alphabets, such as Japanese or Korean.

Small text: Enlarge text within the image to improve readability, but avoid cropping important
details.

Rotation: The model may misinterpret rotated / upside-down text or images.

Visual elements: The model may struggle to understand graphs or text where colors or styles like
solid, dashed, or dotted lines vary.

Spatial reasoning: The model struggles with tasks requiring precise spatial localization, such as
identifying chess positions. Accuracy: The model may generate incorrect descriptions or captions in
certain scenarios.

Image shape: The model struggles with panoramic and fisheye images.

Metadata and resizing: The model doesn’t process original file names or metadata, and images are
resized before analysis, affecting their original dimensions.

Counting: May give approximate counts for objects in images.

CAPTCHAS: For safety reasons, we have implemented a system to block the submission of
CAPTCHA:s.

Examples of prompts (audio generation)

import base64
from openai import OpenAI

client = OpenAI()

completion = client.chat.completions.create (
model="gpt-4o0-audio-preview",
modalities=["text", "audio"],
audio={"voice": "alloy", "format": "wav"},
messages=|[
"role": "user",
"content": "Is a golden retriever a good family dog?"

)

print (completion.choices[0])

wav_bytes = base64.b64decode (completion.choices[0] .message.audio.data)
with open("dog.wav", "wb") as f:
f.write(wav_bytes)

Examples of prompts (text to speech)

from pathlib import Path
from openai import OpenAl
client = OpenAI ()

speech file path = Path(file) .parent /
"speech.mp3"
response = client.audio.speech.create

model="tts-1",

volice="alloy",
input="Today 1s a wonderful day to build something

people lovel™

)

response.stream to file(speech file path)

Examples of prompts (speech to text)

from openai import OpenAlIl
client = OpenAI ()

audio file= open("/path/to/file/audio.mp3", "rb")
transcription = client.audio.transcriptions.create (
model="whisper-1",
file=audio file
)

print (transcription.text)

"text": "Imagine the wildest idea that you've ever had,
and you're curious about how 1t might scale to something
that's a 100, a 1,000 times bigger.

from openai import OpenAl

client = OpenAI () Examples Of prompts

response = client.embeddings.create (.
input="Your text string goes here", (mb dd)
model="text-embedding-3-small" e e I ngs

)

print (response.data[0] .embedding)

{

"object": "list",
"data": [
{
"object": "embedding",
"index": O,

"embedding": [
-0.006929283495992422,
-0.005336422007530928,
... (omitted for spacing)
-4.547132266452536e-05,
-0.024047505110502243

] 4
"model": "text-embedding-3-small",
"usage": {

"prompt tokens": 5,

"total tokens": 5

}

LLM architectures in multimodal data

Multimodal LLM architectures typically involve:

1. Encoders: Specialized for each modality (e.g., vision transformers
for images)

Fusion mechanisms: Combining information from different
modalities

Cross-attention layers: Allowing interaction between modalities

Decoder: Generating outputs based on fused multimodal
representations

Examples include CLIP (Contrastive Language-Image Pre-training) and
FLAMINGO (Few-shot Learning with Auxiliary Modalities).

o DN

Taking better decisions based on multimodal data

Multimodal Al systems can enhance decision-making by:

* Providing more comprehensive insights

* Reducing ambiguity through cross-modal validation

e Capturing nuances that single-modality systems might miss
* Enabling more natural and context-aware interactions

* Supporting complex tasks that require integration of diverse
information

Recommendation systems

Recommendation systems leverage multimodal data to provide
personalized suggestions:

Content-based: Using features from text, images, and user
behavior

Collaborative filtering: Incorporating diverse user interactions

Hybrid approaches: Combining multiple recommendation
strategies

Context-aware: Considering time, location, and other contextual
factors

Deep learning models: Processing complex multimodal features for
accurate recommendations

Example problem

Let’s consider a multimodal recommendation system for a
streaming platform:

Input: - User viewing history (text and metadata) - Content
thumbnails (images) - Movie/show trailers (video) - User ratings
and reviews (text and numerical data)

Task: Recommend personalized content to the user

Approach: 1. Encode each modality separately 2. Fuse
multimodal features 3. Use a deep neural network to predict
user preferences 4. Generate and rank recommendations 5.
Present top suggestions to the user

Challenges and future directions

Data alighment: Ensuring coherence across modalities
Scalability: Handling large-scale multimodal datasets

Interpretability: Understanding decisions in multimodal
systems

Privacy concerns: Protecting user data across diverse
modalities

Ethical considerations: Addressing biases in multimodal Al

Advancements in cross-modal learning: Improving transfer
between modalities

Real-time processing: Enabling faster multimodal interactions

