
Transformers and GPT models



GPT Capabilities 
• Text generation
• Question answering
• Language translation
• Summarization
• Code generation
• … audio, images

Considerations:

• Ethical concerns: Bias, misinformation
• Computational resources: Training large models is expensive
• Limitations: Lack of true understanding, potential for errors



Let’s train our own GPT model 

>> python run.py preprocess
The corpus has 142 unique tokens.
SUCCESS



Let’s train our own GPT model 
>> python run.py train
Initializing a new model.
Parameters to be optimized: 4790926

10:10:27 | step 0: train loss 4.9567, valid loss 4.9876
10:11:56 | step 500: train loss 0.1477, valid loss 5.2037
10:13:49 | step 1000: train loss 0.1291, valid loss 5.8455
10:15:12 | step 1500: train loss 0.1191, valid loss 6.1366
10:16:35 | step 2000: train loss 0.1167, valid loss 6.5854
10:17:58 | step 2500: train loss 0.1106, valid loss 6.6639
10:19:20 | step 3000: train loss 0.1105, valid loss 6.7045
10:20:47 | step 3500: train loss 0.1099, valid loss 6.8777
10:22:07 | step 4000: train loss 0.1095, valid loss 6.8912
10:23:28 | step 4500: train loss 0.1105, valid loss 7.3837
10:24:50 | step 4999: train loss 0.1085, valid loss 6.8775



Let’s train our own GPT model 

>> python run.py train --update



Let’s train our own GPT model 

>> python run.py chat



FLAIR Example 1: Tag Entities in Text 
• Let’s run named entity recognition (NER) over the following example sentence: “I love Berlin and New 

York.”
• Our goal is to identify names in this sentence, and their types.
• To do this, all you need is to make a Sentence for this text, load a pre-trained model and use it to predict 

tags for the sentence:

from flair.data import Sentence
from flair.nn import Classifier

# make a sentence
sentence = Sentence('I love Berlin and New York.')
# load the NER tagger
tagger = Classifier.load('ner')
# run NER over sentence
tagger.predict(sentence)
# print the sentence with all annotations
print(sentence)
Sentence[7]: "I love Berlin and New York." → ["Berlin"/LOC, "New York"/LOC]

The output shows that both “Berlin” and “New York” were tagged as location entities (LOC) in this 
sentence.



FLAIR Example 2: Detect Sentiment 
Let’s run sentiment analysis over the same sentence to determine whether it is POSITIVE or 
NEGATIVE.
You can do this with essentially the same code as above. Just instead of loading the ‘ner’ model, 
you now load the ‘sentiment’ model:

from flair.data import Sentence
from flair.nn import Classifier

# make a sentence
sentence = Sentence('I love Berlin and New York.')
# load the sentiment tagger
tagger = Classifier.load('sentiment')
# run sentiment analysis over sentence
tagger.predict(sentence)
# print the sentence with all annotations
print(sentence)
Sentence[7]: "I love Berlin and New York." → POSITIVE (0.9982)



Tagging parts-of-speech 
Syntax is fundamentally language-specific, so each language has different fine-grained 
parts-of-speech. Flair offers models for many languages:

… in English
from flair.nn import Classifier
from flair.data import Sentence

# load the model
tagger = Classifier.load('pos')
# make a sentence
sentence = Sentence('Dirk went to the store.')
# predict NER tags
tagger.predict(sentence)
# print sentence with predicted tags
print(sentence)
Sentence[6]: "Dirk went to the store." → ["Dirk"/NNP, "went"/VBD, "to"/IN, "the"/DT, 
"store"/NN, "."/.]

“Dirk” is a proper noun (tag: NNP), and “went” is a past tense verb (tag: VBD).



… in German 
from flair.nn import Classifier
from flair.data import Sentence

# load the model
tagger = Classifier.load('de-pos')
# make a sentence
sentence = Sentence('Dort hatte er einen Hut gekauft.')
# predict NER tags
tagger.predict(sentence)
# print sentence with predicted tags
print(sentence)

Sentence[7]: "Dort hatte er einen Hut gekauft." → 
["Dort"/ADV, "hatte"/VAFIN, "er"/PPER, "einen"/ART, 
"Hut"/NN, "gekauft"/VVPP, "."/$.]



… in Ukrainian 

from flair.nn import Classifier
from flair.data import Sentence

# load the model
tagger = Classifier.load('pos-ukrainian')
# make a sentence
sentence = Sentence("Сьогодні в Знам’янці проживають 
нащадки поета — родина Шкоди.")
# predict NER tags
tagger.predict(sentence)
# print sentence with predicted tags
print(sentence)



… in Arabic 

from flair.nn import Classifier
from flair.data import Sentence

# load the model
tagger = Classifier.load('ar-pos')
# make a sentence
sentence = Sentence('عمرو عادلي أستاذ للاقتصاد السياسي المساعد 
('. في الجامعة الأمريكية  بالقاهرة
# predict NER tags
tagger.predict(sentence)
# print sentence with predicted tags
print(sentence)



Tagging universal parts-of-speech (uPoS)  
Universal parts-of-speech are a set of minimal syntactic units that exist across languages. 

For instance, most languages will have VERBs or NOUNs.

FLAIR was trained over 14 langages to tag upos in multilingual text.

from flair.nn import Classifier
from flair.data import Sentence

# load model
tagger = Classifier.load('pos-multi')

# text with English and German sentences
sentence = Sentence('George Washington went to Washington. Dort kaufte er einen Hut.')
# predict PoS tags
tagger.predict(sentence)
# print sentence with predicted tags
print(sentence)
Sentence: "George Washington went to Washington . Dort kaufte er einen Hut ."
→ ["George"/PROPN, "Washington"/PROPN, "went"/VERB, "to"/ADP, "Washington"/PROPN, "."/PUNCT]
→ ["Dort"/ADV, "kaufte"/VERB, "er"/PRON, "einen"/DET, "Hut"/NOUN, "."/PUNCT]



List of POS Models 

ID Task Language Training 
Dataset

Accuracy Contributor 
/ Notes

‘pos’ POS-tagging English Ontonotes 98.19 
(Accuracy)

‘pos-fast’ POS-tagging English Ontonotes 98.1 
(Accuracy)

(fast model)

‘upos’ POS-tagging 
(universal)

English Ontonotes 98.6 
(Accuracy)

‘upos-fast’ POS-tagging 
(universal)

English Ontonotes 98.47 
(Accuracy)

(fast model)

‘pos-multi’ POS-tagging Multilingual UD 
Treebanks

96.41 
(average 
acc.)

(12 
languages)

https://huggingface.co/flair/pos-english
https://huggingface.co/flair/pos-english-fast
https://huggingface.co/flair/upos-english
https://huggingface.co/flair/upos-english-fast
https://huggingface.co/flair/upos-multi


List of POS Models 

ID Task Language Training 
Dataset

Accuracy Contributor 
/ Notes

‘da-pos’ POS-tagging Danish Danish 
Dependency 
Treebank

AmaliePauli

‘pt-pos-clinic
al’

POS-tagging Portuguese PUCPR 92.39 LucasFerroH
AILab for 
clinical texts

‘pos-ukrainia
n’

POS-tagging Ukrainian Ukrainian UD 97.93 (F1) dchaplinsky

https://github.com/UniversalDependencies/UD_Danish-DDT/blob/master/README.md
https://github.com/UniversalDependencies/UD_Danish-DDT/blob/master/README.md
https://github.com/UniversalDependencies/UD_Danish-DDT/blob/master/README.md
https://github.com/AmaliePauli
https://github.com/HAILab-PUCPR/portuguese-clinical-pos-tagger
https://github.com/LucasFerroHAILab
https://github.com/LucasFerroHAILab
https://huggingface.co/dchaplinsky/flair-uk-pos
https://huggingface.co/dchaplinsky/flair-uk-pos
https://universaldependencies.org/treebanks/uk_iu/index.html
https://github.com/dchaplinsky


Classic Word Embeddings 
Classic word embeddings are static and word-level.

• Each distinct word gets exactly one pre-computed embedding.
• Most embeddings fall under this class, including the popular GloVe or Komninos embeddings (e.g. Wikipedia).

from flair.embeddings import WordEmbeddings

# init embedding
glove_embedding = WordEmbeddings('glove')
# create sentence.
sentence = Sentence('The grass is green .')
# embed a sentence using glove.
glove_embedding.embed(sentence)
# now check out the embedded tokens.
for token in sentence:
    print(token)
    print(token.embedding)

This prints out the tokens and their embeddings. GloVe embeddings are Pytorch vectors of dimensionality 100.



ID Language Embedding

‘en-glove’ (or ‘glove’) English GloVe embeddings

‘en-extvec’ (or ‘extvec’) English Komninos embeddings

‘en-crawl’ (or ‘crawl’) English FastText embeddings over 
Web crawls

‘en-twitter’ (or ‘twitter’) English Twitter embeddings

‘en’ (or ‘en-news’ or 
‘news’)

English FastText embeddings over 
news and wikipedia data

‘de’ German German FastText 
embeddings

‘fr’ French French FastText 
embeddings

‘es’ Spanish Spanish FastText 
embeddings



Custom embeddings

• Loading Gensim embeddings:

custom_embedding = WordEmbeddings('path/to/your/custom/embeddings.gensim')

• Converting FastText embeddings to Gensim:

import gensim
word_vectors = gensim.models.KeyedVectors.load_word2vec_format('/path/to/embeddings.txt', binary=False)
word_vectors.save('/path/to/converted’)

• However, FastText embeddings have the functionality of returning vectors for 
out of vocabulary words using the sub-word information.





What is a prompt? 

• A prompt is a specific input or instruction given to an AI model 
to elicit a desired response or output.

• It serves as a starting point for the AI to generate text, answer 
questions, or perform tasks. Prompts can range from simple 
questions to complex scenarios or instructions.



How prompts are fed into OpenAI tools

• OpenAI tools, such as GPT-3 or ChatGPT, process prompts 
through their API or user interface.

• General workflow:
1. User inputs a prompt

2. The prompt is tokenized and encoded

3. The encoded prompt is fed into the AI model

4. The model generates a response based on its training

5. The response is decoded and presented to the user



Types of prompts 

There are several types of prompts, including:

1. Open-ended: General questions or statements that allow for 
diverse responses

2. Instructional: Specific directions for the AI to follow

3. Context-based: Prompts that provide background information

4. Role-playing: Asking the AI to assume a particular persona

5. Completion: Partial sentences or ideas for the AI to finish

6. Creative: Prompts designed to generate imaginative content



Types of models 
There are several types of 
models, including:



Examples of prompts (user message) 

const response = await openai.chat.completions.create({
  model: "gpt-4o",
  messages: [
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "Write a haiku about programming."
        }
      ]
    }
  ]
});



Examples of prompts (system messages) 
const response = await openai.chat.completions.create({
  model: "gpt-4o",
  messages: [
    {
      "role": "system",
      "content": [
        {
          "type": "text",
          "text": `
            You are a helpful assistant that answers programming questions 
            in the style of a southern belle from the southeast United States.
          `
        }
      ]
    },
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "Are semicolons optional in JavaScript?"
        }
      ]
    }
  ]
});



Examples of prompts (assistant messages) 
Capture the results of a previous text generation result, and making a new request based on that. 
They can also be used to provide examples to the model for how it should respond to the current 
request - a technique known as few-shot learning.

const response = await openai.chat.completions.create({
  model: "gpt-4o",
  messages: [
    {
      "role": "user",
      "content": [{ "type": "text", "text": "knock knock." }]
    },
    {
      "role": "assistant",
      "content": [{ "type": "text", "text": "Who's there?" }]
    },
    {
      "role": "user",
      "content": [{ "type": "text", "text": "Orange." }]
    }
  ]
});



How ChatGPT was trained 

ChatGPT was trained using a method called Reinforcement 
Learning from Human Feedback (RLHF). The process involved:
1. Pretraining: Learning from a large corpus of internet text
2. Fine-tuning: Using supervised learning on human-written 

conversations
3. Reward modeling: Training a reward model based on human 

preferences
4. Reinforcement learning: Optimizing the model’s responses 

using the reward model



Can ChatGPT learn more from our data? 

ChatGPT’s base model doesn’t learn from individual interactions. 
However, OpenAI has introduced features like:

• Fine-tuning: Allowing organizations to customize the model 
on their data

• GPT-4 with retrieval: Enabling the model to access and use 
external knowledge bases

• ChatGPT plugins: Extending the model’s capabilities through 
third-party integrations



Can ChatGPT learn more from our data? 

At a high level, fine-tuning involves the following steps:

1. Prepare and upload training data

2. Train a new fine-tuned model

3. Evaluate results and go back to step 1 if needed

4. Use your fine-tuned model

Once a model has been fine-tuned, you won’t need to provide 
as many examples in the prompt. This saves costs and enables 
lower-latency requests.



Which models can be fine-tuned? 

Fine-tuning is currently available for the following models:
• gpt-4o-2024-08-06
• gpt-4o-mini-2024-07-18
• gpt-4-0613
• gpt-3.5-turbo-0125
• gpt-3.5-turbo-1106
• gpt-3.5-turbo-0613
You can also fine-tune a fine-tuned model, which is useful if you 
acquire additional data and don’t want to repeat the previous training 
steps.



Example data format for fine-tuning 

{"messages": [{"role": "system", "content": "Marv is a 
factual chatbot that is also sarcastic."}, {"role": "user", 
"content": "What's the capital of France?"}, {"role": 
"assistant", "content": "Paris, as if everyone doesn't know 
that already."}]}
{"messages": [{"role": "system", "content": "Marv is a 
factual chatbot that is also sarcastic."}, {"role": "user", 
"content": "Who wrote 'Romeo and Juliet'?"}, {"role": 
"assistant", "content": "Oh, just some guy named William 
Shakespeare. Ever heard of him?"}]}
{"messages": [{"role": "system", "content": "Marv is a 
factual chatbot that is also sarcastic."}, {"role": "user", 
"content": "How far is the Moon from Earth?"}, {"role": 
"assistant", "content": "Around 384,400 kilometers. Give or 
take a few, like that really matters."}]}



Perform fine-tuning 

from openai import OpenAI
client = OpenAI()

client.fine_tuning.jobs.create(
  training_file="file-abc123",
  model="gpt-4o-mini-2024-07-18"
)



Using a fine-tuned model 

from openai import OpenAI
client = OpenAI()

completion = client.chat.completions.create(
  model="ft:gpt-4o-mini:my-org:custom_suffix:id",
  messages=[
    {"role": "system", "content": "You are a 
helpful assistant."},
    {"role": "user", "content": "Hello!"}
  ]
)
print(completion.choices[0].message)



Analyzing a fine-tuned model 

{
    "object": "fine_tuning.job.event",
    "id": "ftevent-abc-123",
    "created_at": 1693582679,
    "level": "info",
    "message": "Step 300/300: training loss=0.15, validation loss=0.27, full 
validation loss=0.40",
    "data": {
        "step": 300,
        "train_loss": 0.14991648495197296,
        "valid_loss": 0.26569826706596045,
        "total_steps": 300,
        "full_valid_loss": 0.4032616495084362,
        "train_mean_token_accuracy": 0.9444444179534912,
        "valid_mean_token_accuracy": 0.9565217391304348,
        "full_valid_mean_token_accuracy": 0.9089635854341737
    },
    "type": "metrics"
}



Integrating LLMs in everyday life 

Large Language Models (LLMs) are being integrated into various 
aspects of daily life:
• Personal assistants: Enhancing digital assistants like Siri or 

Alexa
• Content creation: Assisting in writing, coding, and creative 

tasks
• Education: Providing personalized tutoring and explanations
• Customer service: Powering chatbots and support systems
• Research and analysis: Aiding in data interpretation and 

summarization



But life is multimodal 

While text-based LLMs are powerful, human experience and 
interaction involve multiple senses and forms of data. 

This realization has led to the development of multimodal AI 
systems that can process and generate various types of 
information.



What is multimodal data? 

Multimodal data refers to information presented in multiple forms or 
“modalities.” Common modalities include:
• Text
• Images
• Audio
• Video
• Numerical data
• Sensor readings
Multimodal data provides a richer, more comprehensive representation of 
information, mimicking how humans perceive and interact with the world.



Can ChatGPT-type models learn multimodal data? 

Yes, ChatGPT-type models can be adapted to learn multimodal 
data. Recent developments include:

• GPT-4: Capable of processing both text and images

• DALL-E: Generating images from text descriptions

• Whisper: Transcribing and translating audio to text

These advancements demonstrate the potential for LLMs to 
handle diverse data types.



Examples of prompts 
(images) from openai import OpenAI

client = OpenAI()

response = client.chat.completions.create(
  model="gpt-4o-mini",
  messages=[
    {
      "role": "user",
      "content": [
        {"type": "text", "text": "What’s in this image?"},
        {
          "type": "image_url",
          "image_url": {
            "url": "https://upload.wikimedia.org/...walk.jpg",
          },
        },
      ],
    }
  ],
  max_tokens=300,
)

print(response.choices[0])

What is in this image?



Examples of prompts 
(local images) 

import base64
from openai import OpenAI

client = OpenAI()

# Function to encode the image
def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')

# Path to your image
image_path = "path_to_your_image.jpg"

# Getting the base64 string
base64_image = encode_image(image_path)

response = client.chat.completions.create(
  model="gpt-4o-mini",
  messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What is in this image?",
        },
        {
          "type": "image_url",
          "image_url": {
            "url":  f"data:image/jpeg;base64,{base64_image}"
          },
        },
      ],
    }
  ],
)

print(response.choices[0])

What is in this image?



Examples of 
prompts (multiple 

images) 

from openai import OpenAI

client = OpenAI()
response = client.chat.completions.create(
  model="gpt-4o-mini",
  messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What are in these images? Is there any difference 
between them?",
        },
        {
          "type": "image_url",
          "image_url": {
            "url": "https://upload.wikimedia...-boardwalk.jpg",
          },
        },
        {
          "type": "image_url",
          "image_url": {
            "url": "https://upload.wikimedia.or...dwalk.jpg",
          },
        },
      ],
    }
  ],
  max_tokens=300,
)
print(response.choices[0])

What is in this image?



Examples of prompts (low/high fidelity image 
understanding) What is in this image?

from openai import OpenAI

client = OpenAI()

response = client.chat.completions.create(
  model="gpt-4o-mini",
  messages=[
    {
      "role": "user",
      "content": [
        {"type": "text", "text": "What’s in this image?"},
        {
          "type": "image_url",
          "image_url": {
            "url": 
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nat
ure-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
            "detail": "high"
          },
        },
      ],
    }
  ],
  max_tokens=300,
)

print(response.choices[0].message.content)



Choosing low/high fidelity image understanding 
modes 

By controlling the detail parameter, which has three options, low, high, or auto, you 
have control over how the model processes the image and generates its textual 
understanding. 
By default, the model will use the auto setting which will look at the image input 
size and decide if it should use the low or high setting.

• low will enable the “low res” mode. The model will receive a low-res 512px x 
512px version of the image, and represent the image with a budget of 85 
tokens. This allows the API to return faster responses and consume fewer input 
tokens for use cases that do not require high detail. 

• high will enable “high res” mode, which first allows the model to first see the 
low res image (using 85 tokens) and then creates detailed crops using 170 
tokens for each 512px x 512px tile.



Prompts - limitations 
• Medical images: The model is not suitable for interpreting specialized medical images like CT scans 

and shouldn’t be used for medical advice. 
• Non-English: The model may not perform optimally when handling images with text of non-Latin 

alphabets, such as Japanese or Korean. 
• Small text: Enlarge text within the image to improve readability, but avoid cropping important 

details. 
• Rotation: The model may misinterpret rotated / upside-down text or images. 
• Visual elements: The model may struggle to understand graphs or text where colors or styles like 

solid, dashed, or dotted lines vary. 
• Spatial reasoning: The model struggles with tasks requiring precise spatial localization, such as 

identifying chess positions. Accuracy: The model may generate incorrect descriptions or captions in 
certain scenarios. 

• Image shape: The model struggles with panoramic and fisheye images. 
• Metadata and resizing: The model doesn’t process original file names or metadata, and images are 

resized before analysis, affecting their original dimensions. 
• Counting: May give approximate counts for objects in images. 
• CAPTCHAS: For safety reasons, we have implemented a system to block the submission of 

CAPTCHAs.



Examples of prompts (audio generation) 
import base64
from openai import OpenAI

client = OpenAI()

completion = client.chat.completions.create(
    model="gpt-4o-audio-preview",
    modalities=["text", "audio"],
    audio={"voice": "alloy", "format": "wav"},
    messages=[
        {
            "role": "user",
            "content": "Is a golden retriever a good family dog?"
        }
    ]
)

print(completion.choices[0])

wav_bytes = base64.b64decode(completion.choices[0].message.audio.data)
with open("dog.wav", "wb") as f:
    f.write(wav_bytes)



Examples of prompts (text to speech) 

from pathlib import Path
from openai import OpenAI
client = OpenAI()

speech_file_path = Path(__file__).parent / 
"speech.mp3"
response = client.audio.speech.create(
  model="tts-1",
  voice="alloy",
  input="Today is a wonderful day to build something 
people love!"
)

response.stream_to_file(speech_file_path)



Examples of prompts (speech to text) 

from openai import OpenAI
client = OpenAI()

audio_file= open("/path/to/file/audio.mp3", "rb")
transcription = client.audio.transcriptions.create(
  model="whisper-1", 
  file=audio_file
)
print(transcription.text)
{
  "text": "Imagine the wildest idea that you've ever had, 
and you're curious about how it might scale to something 
that's a 100, a 1,000 times bigger.
....
}



Examples of prompts 
(embeddings) 

from openai import OpenAI
client = OpenAI()

response = client.embeddings.create(
    input="Your text string goes here",
    model="text-embedding-3-small"
)

print(response.data[0].embedding)
{
  "object": "list",
  "data": [
    {
      "object": "embedding",
      "index": 0,
      "embedding": [
        -0.006929283495992422,
        -0.005336422007530928,
        ... (omitted for spacing)
        -4.547132266452536e-05,
        -0.024047505110502243
      ],
    }
  ],
  "model": "text-embedding-3-small",
  "usage": {
    "prompt_tokens": 5,
    "total_tokens": 5
  }
}



LLM architectures in multimodal data 

Multimodal LLM architectures typically involve:
1. Encoders: Specialized for each modality (e.g., vision transformers 

for images)
2. Fusion mechanisms: Combining information from different 

modalities
3. Cross-attention layers: Allowing interaction between modalities
4. Decoder: Generating outputs based on fused multimodal 

representations
Examples include CLIP (Contrastive Language-Image Pre-training) and 
FLAMINGO (Few-shot Learning with Auxiliary Modalities).



Taking better decisions based on multimodal data 

Multimodal AI systems can enhance decision-making by:

• Providing more comprehensive insights

• Reducing ambiguity through cross-modal validation

• Capturing nuances that single-modality systems might miss

• Enabling more natural and context-aware interactions

• Supporting complex tasks that require integration of diverse 
information



Recommendation systems 

Recommendation systems leverage multimodal data to provide 
personalized suggestions:
• Content-based: Using features from text, images, and user 

behavior
• Collaborative filtering: Incorporating diverse user interactions
• Hybrid approaches: Combining multiple recommendation 

strategies
• Context-aware: Considering time, location, and other contextual 

factors
• Deep learning models: Processing complex multimodal features for 

accurate recommendations



Example problem 

Let’s consider a multimodal recommendation system for a 
streaming platform:
Input: - User viewing history (text and metadata) - Content 
thumbnails (images) - Movie/show trailers (video) - User ratings 
and reviews (text and numerical data)
Task: Recommend personalized content to the user
Approach: 1. Encode each modality separately 2. Fuse 
multimodal features 3. Use a deep neural network to predict 
user preferences 4. Generate and rank recommendations 5. 
Present top suggestions to the user



Challenges and future directions 

• Data alignment: Ensuring coherence across modalities
• Scalability: Handling large-scale multimodal datasets
• Interpretability: Understanding decisions in multimodal 

systems
• Privacy concerns: Protecting user data across diverse 

modalities
• Ethical considerations: Addressing biases in multimodal AI
• Advancements in cross-modal learning: Improving transfer 

between modalities
• Real-time processing: Enabling faster multimodal interactions


