Recurrent Neural and Long-Short Memory
Networks

Alejandro Veloz

How do we do sequential learning?

Some special neural networks designed to work on sequential data:

e RNN (Recurrent Neural Network) - the fundamental architecture.

e LSTM (Long Short-Term Memory) - a more advanced and complex
RNN that overcomes some limitations of traditional RNNs.

e GRU (Gated Recurrent Unit) - a simpler but effective and faster
version of LSTM.

e Transformers - the most powerful.

Recurrent Neural Network

State machines

A state machine is a description of a process (computational, physical,
economic) in terms of its potential sequences of states.

The state of a system is defined to be all you would need to know about
the system to predict its future trajectories.

Formally, we define a state machine as: (S, X, Y, s, fs, f)

S, X,) are sets of possible states, inputs, and outputs, respectively.
5y € Sis theinitial state of the machine.

fs+ S X X — Sisa transition function (which takes an input and a previous state and
produces a next state).

f, + & — Yis an output function (which takes a state and produces an output).

State machines

The basic operation of the state machine is to start with state s, then
iteratively compute fort > 1:

St = fs(st—h wt)

Y, = fo(s)

Given a sequence of inputs &, Z, ... the machine generates a sequence
of outputs:

fo(fs(S0521))

51

hn

State machines

The basic operation of the state machine is to start with state s, then
iteratively compute fort > 1:

sy = fo(8i-1,)
Y, = fo(s)

Given a sequence of inputs &, Z, ... the machine generates a sequence
of outputs:

folfs(sg,21)) s [, (fs(fs(S05 1), 25)), ...

51 S

hn Y2

Recurrent neural network (RNN)

A RNN is a state machine in e f,and f, are activation functions.

which neural networks o The inputs, states, and outputs are all
constitute the functions f,

and f,: vector-valued:
x,:fx1, s,:mx1, y :vxl
o= £(Wena, + e, W) o
e The weights in the network are:
v = fo(Wos, + W), WS s x £, W* s m x m,

Wi e mx1,W°:vxm, W7 :vxl,

Remember that we apply f, and f, elementwise, unless f, is a softmax
activation.

Sequence-to-sequence learning

Sequence-to-sequence mapping can be viewed as a regression problem:
given an input sequence, the goal is to learn how to generate the
corresponding output sequence.

A training set has the form:

where:

o 2" and y(i) are sequences of length n(i),
¢ the sequences within the same pair have the same length, and
e sequences in different pairs may have different lengths.

Types of sequence-to-sequence learning

Many to one One to many Many to many

Recurrent
cell

RNN forward pass

ho

o | @ o9 w

RNN forward pass

Forward pass

Loss functions for sequence-to-sequence models
Many possible ways to define a loss function for sequences.

A common approach is to apply a per-element loss and sum over the
sequence length. For example:

Let g = [9y, g5, ---| be the predicted sequence produced by the RNN
model, and y = [y, ¥, --.] the ground truth sequence.

The sequence loss can then be defined as:

n(")

L l00) = 3 L (0" 01").

t=1

Loss functions for sequence-to-sequence models

The per-element loss £ . depends on the nature of the outputs ¥,, e.g.

e Categorical cross-entropy for class labels.
e Squared loss for continuous targets.

Sequence-to-sequence model training

The model parameters are W = (W** W W W3* W).

The training objective is to minimize the average sequence loss across
all training examples:

1 q
_Z[’seq RNN W) y()>7

=1

Q

where RNN(x; W) denotes the output sequence produced for input
sequence .

Types of loss functions

o Element-wise losses: sum a per-step loss such as Negative
Log-Likelihood (NLL) for classification or Mean Squared Error

(MSE) for regression.
e Sequence-level losses: add losses that capture properties of the
whole sequence, such as:
« Connectionist Temporal Classification (CTC) loss - for unaligned sequence data (e.q.,
speech recognition).
« Sequence-to-sequence (Seq2Seq) cross-entropy loss — for discrete outputs, e.g. words.
o Edit-distance or BLEU-score inspired losses — for structured predictions where sequence
accuracy matters globally.
« Reinforcement-style sequence rewards - for tasks like text generation, where quality is not
purely per-element.

RNN as a language model

A language modelis a sequence-to-sequence RNN trained on a token
sequence ¢ = (¢, Cy, ..., ¢;) and is used to predict the next token ¢,
(For t < k) given the previous ¢ — 1 tokens:

¢, = RNN((Cl,CQ, ey C1); W)

RNN as a language model

We can convert this to a sequence-to-sequence training problem by
constructing a dataset of ¢ different (x, y) sequence pairs.

We introduce special tokens (start) and (end) to signal the beginning
and end of the sequence:

€T = ((start>, C1,Coy ... Ck)’

y = (¢, ¢, ..., (end)).

RNN as a language model

AP

X1 X2 X3

RNN as a language model

ben gelukkig (stop)

g 00 g 00 g B0

Ik ben gelukigg

e

encoder

~

decoder

Back-propagation through time (BPTT)

Find a ¥/ to minimize .J using gradient descent.

Unrolled RNN

t I !
o1 J> g3
z7 z3 73
wg —(+) wg —(*) W ()
s we Wi we we® we
1 1 1
So z $1 2 52 & E
wes 1 fa l wss 2 fs l WSS !
W sx W sx |
Xq Xo X3

20

21

Back-propagation through time (BPTT)

The BPTT process goes as follows:

1. Sampling: Sample a training pair of sequences (i, y); let their
length be n.

2. Unrolling: “Unroll” the RNN to length n (for example, n = 3), and
initialize s:

The problem resembles performing
back-propagation on a feed-forward
network, except that the weight matrices
are shared across time.

This is similar in spirit to CNN, where
weights are reused spatially.

22

Back-propagation through time (BPTT)

3. Forward Pass: Compute the predicted output sequence g via:

2= W, + Wos,_ | + W
St - fs(ztl>

ZtQ — WOSLL + WOO

gt - fo(zt2>

23

Back-propagation through time (BPTT)

4. Backward Pass: Compute the gradients.

For both W*% and W*%, we need:

d‘C’seq (97 y) — i dﬁelt (gu7 yu)
dW e W

Let £, = L (9,,Y,)- Using the total derivative (summing over all the
ways W affects L), we have:

u

0s,

ALy _ 05 | 0L, | 5~ OF
aw oW | s, A
0%t

24

0°t represents the impact of state s, on all future losses.

Define the future loss after step t as:

- OF,
F, = Z L.(9,,v,) sothat §% = L

u=t+1 ast
Note that <), = 0 (hence °» = 0).
Working backwards, for each ¢ we have:

§St-1 = ast la‘celt(gmyt)

9% | .
08,4 0s, i

25

Using the chain rule, we write:

a’/:’elt(gtvyt) — 82,52 aﬁelt(gtayt)
ds, Js, 022

and

Y

1
as, Oz; 0s; . 0s,

- 1
0s,_, 0s,_; 0z

o
0z,

26

Note that % is Formally an m X m diagonal matrix whose diagonal
t

entries are fs(ztll) forl <i < m.
We can represent this diagonal matrix as an m X 1 vector fs(ztl) In that

case, the product W*57 x f;(ztl) should be interpreted as multiplying
each column of TW**T by the corresponding entry of f,(z}).

27

Putting everything together, we obtain:

sois — pyest 0% (WOT oL, | 5)

2
0z;

1
0z,

The gradients for the weight matrices are then given by

dLl
dWss

AL,
dWsm

seq

"\ Ozt Os, OF, |
= OWE 0z Bs,

B z”: 0z 0s, OF, 4
—~ OWsr Oz s,

28

The weight W is simpler because it does not affect future losses:
Z 8£ 8zt
dWO 8zt2 owe’
oL

Assuming R —t = (g, — v,) (which holds for squared loss, softmax-NLL,
etc.), then:

dLl, &
dW;I - Z(gt T yt) SI

t=1

Derive the updates for the offsets V/;° and V.

The problem of long-term dependences
29999
o8-8
$ee 00

The problem of long-term dependences

?????

o-0-0-0-a

XEXX

The problem of long-term dependences

????? ??@
-0

3&&3& &&é

30

Long short-term memory

31

Long short-term memory

@

®
e
o) (o) o) (o)

N

[

@ s

Neural L
D Network O Pointwise —» Vector :]-> Concatenate —[:Copy
Layer operation transfer

32

Long short-term memory

St-1

gi—1

\ A

32

Long short-term memory

33

Si-1

Long short-term memory

St

@

34

gi—1

fi

Long short-term memory

[Forget gate layer]
fi=0 (Wf‘ 91,7 + bf)

35

gi—1

Long short-term memory

[input gate layer]
iy =0 (Wi [g 1,7 +b;)
[new candidate states]

tanh §t — tanh (WS : [gt_17 xt] + bS)

36

Si-1

Long short-term memory

[State update] B
Sp = fi * Spy +ip % 5
Sy

fIi

@
t
St

37

Long short-term memory

[output]
Ot =0 (M/o [gt—h xt] + bo)
St

g, = o, x tanh (.S,)

