
Recurrent Neural and Long-Short Memory
Networks

Alejandro Veloz



How do we do sequential learning?

Some special neural networks designed to work on sequential data:

RNN (Recurrent Neural Network) - the fundamental architecture.

LSTM (Long Short-Term Memory) - a more advanced and complex

RNN that overcomes some limitations of traditional RNNs.

GRU (Gated Recurrent Unit) - a simpler but effective and faster

version of LSTM.

Transformers - the most powerful.

2



Recurrent Neural Network

3



State machines
A state machine is a description of a process (computational, physical,

economic) in terms of its potential sequences of states.

The state of a system is defined to be all you would need to know about

the system to predict its future trajectories.

Formally, we define a state machine as: (S,X ,Y, 𝑠0, 𝑓𝑠, 𝑓𝑜)
S, X , Y are sets of possible states, inputs, and outputs, respectively.

𝑠0 ∈ S is the initial state of the machine.

𝑓𝑠 ∶ S × X → S is a transition function (which takes an input and a previous state and

produces a next state).

𝑓𝑜 ∶ S → Y is an output function (which takes a state and produces an output).

4



State machines
The basic operation of the state machine is to start with state 𝑠0, then

iteratively compute for 𝑡 ≥ 1:
𝑠𝑡 = 𝑓𝑠(𝑠𝑡−1, 𝑥𝑡)

𝑦𝑡 = 𝑓𝑜(𝑠𝑡)

Given a sequence of inputs 𝑥1, 𝑥2, … the machine generates a sequence

of outputs:

𝑓𝑜(𝑓𝑠(𝑠0, 𝑥1)⏟
𝑠1

)
⏟⏟⏟⏟⏟

𝑦1

, 𝑓𝑜(𝑓𝑠(𝑓𝑠(𝑠0, 𝑥1), 𝑥2)⏟⏟⏟⏟⏟⏟⏟
𝑠2

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑦2

, …

5



State machines
The basic operation of the state machine is to start with state 𝑠0, then

iteratively compute for 𝑡 ≥ 1:
𝑠𝑡 = 𝑓𝑠(𝑠𝑡−1, 𝑥𝑡)

𝑦𝑡 = 𝑓𝑜(𝑠𝑡)

Given a sequence of inputs 𝑥1, 𝑥2, … the machine generates a sequence

of outputs:

𝑓𝑜(𝑓𝑠(𝑠0, 𝑥1)⏟
𝑠1

)
⏟⏟⏟⏟⏟

𝑦1

, 𝑓𝑜(𝑓𝑠(𝑓𝑠(𝑠0, 𝑥1), 𝑥2)⏟⏟⏟⏟⏟⏟⏟
𝑠2

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑦2

, …

5



Recurrent neural network (RNN)
A RNN is a state machine in
which neural networks
constitute the functions 𝑓𝑠
and 𝑓𝑜:

𝑠𝑡 = 𝑓𝑠(𝑊 𝑠𝑥𝑥𝑡 + 𝑊 𝑠𝑠𝑠𝑡−1 + 𝑊 𝑠𝑠
0 )

𝑦𝑡 = 𝑓𝑜(𝑊 𝑜𝑠𝑡 + 𝑊 𝑜
0 ).

𝑓𝑠 and 𝑓𝑜 are activation functions.

The inputs, states, and outputs are all

vector-valued:

𝑥𝑡 ∶ ℓ × 1, 𝑠𝑡 ∶ 𝑚 × 1, 𝑦𝑡 ∶ 𝑣 × 1.

The weights in the network are:

𝑊 𝑠𝑥 ∶ 𝑚 × ℓ, 𝑊 𝑠𝑠 ∶ 𝑚 × 𝑚,

𝑊 𝑠𝑠
0 ∶ 𝑚×1, 𝑊 𝑜 ∶ 𝑣×𝑚, 𝑊 𝑜

0 ∶ 𝑣×1,
Remember that we apply 𝑓𝑠 and 𝑓𝑜 elementwise, unless 𝑓𝑜 is a softmax

activation.

6



Sequence-to-sequence learning
Sequence-to-sequence mapping can be viewed as a regression problem:

given an input sequence, the goal is to learn how to generate the

corresponding output sequence.

A training set has the form:

[(𝑥(1), 𝑦(1)) , … , (𝑥(𝑞), 𝑦(𝑞))] ,

where:

𝑥(𝑖) and 𝑦(𝑖) are sequences of length 𝑛(𝑖),

the sequences within the same pair have the same length, and

sequences in different pairs may have different lengths.
7



Types of sequence-to-sequence learning

8



RNN forward pass

9



RNN forward pass

10



Loss functions for sequence-to-sequence models

Many possible ways to define a loss function for sequences.

A common approach is to apply a per-element loss and sum over the

sequence length. For example:

Let 𝑔 = [𝑔1, 𝑔2, …] be the predicted sequence produced by the RNN

model, and 𝑦 = [𝑦1, 𝑦2, …] the ground truth sequence.

The sequence loss can then be defined as:

Lseq (𝑔(𝑖), 𝑦(𝑖)) =
𝑛(𝑖)

∑
𝑡=1

Lelt (𝑔(𝑖)
𝑡 , 𝑦(𝑖)

𝑡 ) .

11



Loss functions for sequence-to-sequence models

The per-element lossLelt depends on the nature of the outputs 𝑦𝑡, e.g.

Categorical cross-entropy for class labels.

Squared loss for continuous targets.

12



Sequence-to-sequence model training

The model parameters are 𝑊 = (𝑊 𝑠𝑥, 𝑊 𝑠𝑠, 𝑊 𝑜, 𝑊 𝑠𝑠
0 , 𝑊 𝑜

0 ).
The training objective is to minimize the average sequence loss across

all training examples:

𝐽(𝑊) = 1
𝑞

𝑞

∑
𝑖=1

Lseq(RNN(𝑥(𝑖); 𝑊), 𝑦(𝑖)),

where RNN(𝑥; 𝑊) denotes the output sequence produced for input

sequence 𝑥.

13



Types of loss functions

Element-wise losses: sum a per-step loss such as Negative

Log-Likelihood (NLL) for classification orMean Squared Error

(MSE) for regression.
Sequence-level losses: add losses that capture properties of the
whole sequence, such as:

Connectionist Temporal Classification (CTC) loss – for unaligned sequence data (e.g.,

speech recognition).

Sequence-to-sequence (Seq2Seq) cross-entropy loss – for discrete outputs, e.g. words.

Edit-distance or BLEU-score inspired losses – for structured predictions where sequence

accuracy matters globally.

Reinforcement-style sequence rewards – for tasks like text generation, where quality is not

purely per-element.

14



RNN as a language model

A language model is a sequence-to-sequence RNN trained on a token

sequence 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑘) and is used to predict the next token 𝑐𝑡
(for 𝑡 ≤ 𝑘) given the previous 𝑡 − 1 tokens:

𝑐𝑡 = RNN((𝑐1, 𝑐2, … , 𝑐𝑡−1); 𝑊).

15



RNN as a language model

We can convert this to a sequence-to-sequence training problem by

constructing a dataset of 𝑞 different (𝑥, 𝑦) sequence pairs.

We introduce special tokens ⟨start⟩ and ⟨end⟩ to signal the beginning

and end of the sequence:

𝑥 = (⟨start⟩, 𝑐1, 𝑐2, … , 𝑐𝑘),
𝑦 = (𝑐1, 𝑐2, … , ⟨end⟩).

16



RNN as a language model

z0 w w w

y1 y2 y3

x1 x2 x3

z1 z2

17



RNN as a language model

z0 w w w w w w w

Ik ben gelukkig ⟨stop⟩

I am happy ⟨start⟩ Ik ben gelukigg

z∗

encoder decoder

18



Back-propagation through time (BPTT)

Find a 𝑊 to minimize 𝐽 using gradient descent.

19



Unrolled RNN

20



Back-propagation through time (BPTT)
The BPTT process goes as follows:

1. Sampling: Sample a training pair of sequences (𝑥, 𝑦); let their
length be 𝑛.

2. Unrolling: “Unroll” the RNN to length 𝑛 (for example, 𝑛 = 3), and
initialize 𝑠0:

The problem resembles performing

back-propagation on a feed-forward

network, except that the weight matrices

are shared across time.

This is similar in spirit to CNN, where

weights are reused spatially.

21



Back-propagation through time (BPTT)

3. Forward Pass: Compute the predicted output sequence 𝑔 via:

𝑧1
𝑡 = 𝑊 𝑠𝑥𝑥𝑡 + 𝑊 𝑠𝑠𝑠𝑡−1 + 𝑊 𝑠𝑠

0
𝑠𝑡 = 𝑓𝑠(𝑧1

𝑡 )
𝑧2

𝑡 = 𝑊 𝑜𝑠𝑡 + 𝑊 𝑜
0

𝑔𝑡 = 𝑓𝑜(𝑧2
𝑡 )

22



Back-propagation through time (BPTT)
4. Backward Pass: Compute the gradients.

For both 𝑊 𝑠𝑠 and 𝑊 𝑠𝑥, we need:

𝑑Lseq(𝑔, 𝑦)
𝑑𝑊

=
𝑛

∑
𝑢=1

𝑑Lelt(𝑔𝑢, 𝑦𝑢)
𝑑𝑊

.

LetL𝑢 = Lelt(𝑔𝑢, 𝑦𝑢). Using the total derivative (summing over all the

ways 𝑊 affectsL𝑢), we have:

𝑑Lseq

𝑑𝑊
=

𝑛
∑
𝑡=1

𝜕𝑠𝑡
𝜕𝑊

⎛⎜⎜⎜⎜
⎝

𝜕L𝑡
𝜕𝑠𝑡

+
𝑛

∑
𝑢=𝑡+1

𝜕L𝑢
𝜕𝑠𝑡⏟⏟⏟⏟⏟

𝛿𝑠𝑡

⎞⎟⎟⎟⎟
⎠

.

23



𝛿𝑠𝑡 represents the impact of state 𝑠𝑡 on all future losses.

Define the future loss after step 𝑡 as:

𝐹𝑡 =
𝑛

∑
𝑢=𝑡+1

Lelt(𝑔𝑢, 𝑦𝑢) so that 𝛿𝑠𝑡 = 𝜕𝐹𝑡
𝜕𝑠𝑡

.

Note that 𝐹𝑛 = 0 (hence 𝛿𝑠𝑛 = 0).
Working backwards, for each 𝑡 we have:

𝛿𝑠𝑡−1 = 𝜕𝑠𝑡
𝜕𝑠𝑡−1

[𝜕Lelt(𝑔𝑡, 𝑦𝑡)
𝜕𝑠𝑡

+ 𝛿𝑠𝑡] .

24



Using the chain rule, we write:

𝜕Lelt(𝑔𝑡, 𝑦𝑡)
𝜕𝑠𝑡

= 𝜕𝑧2
𝑡

𝜕𝑠𝑡

𝜕Lelt(𝑔𝑡, 𝑦𝑡)
𝜕𝑧2

𝑡
,

and
𝜕𝑠𝑡

𝜕𝑠𝑡−1
= 𝜕𝑧1

𝑡
𝜕𝑠𝑡−1

𝜕𝑠𝑡
𝜕𝑧1

𝑡
= 𝑊 𝑠𝑠T 𝜕𝑠𝑡

𝜕𝑧1
𝑡
.

25



Note that
𝜕𝑠𝑡
𝜕𝑧1

𝑡
is formally an 𝑚 × 𝑚 diagonal matrix whose diagonal

entries are 𝑓 ′
𝑠(𝑧1

𝑡,𝑖) for 1 ≤ 𝑖 ≤ 𝑚.

We can represent this diagonal matrix as an 𝑚 × 1 vector 𝑓 ′
𝑠(𝑧1

𝑡 ). In that

case, the product 𝑊 𝑠𝑠T ∗ 𝑓 ′
𝑠(𝑧1

𝑡 ) should be interpreted as multiplying

each column of 𝑊 𝑠𝑠T by the corresponding entry of 𝑓 ′
𝑠(𝑧1

𝑡 ).

26



Putting everything together, we obtain:

𝛿𝑠𝑡−1 = 𝑊 𝑠𝑠T 𝜕𝑠𝑡
𝜕𝑧1

𝑡
(𝑊 𝑜T 𝜕L𝑡

𝜕𝑧2
𝑡

+ 𝛿𝑠𝑡).

The gradients for the weight matrices are then given by

𝑑Lseq

𝑑𝑊 𝑠𝑠 =
𝑛

∑
𝑡=1

𝜕𝑧1
𝑡

𝜕𝑊 𝑠𝑠
𝜕𝑠𝑡
𝜕𝑧1

𝑡

𝜕𝐹𝑡−1
𝜕𝑠𝑡

,

𝑑Lseq

𝑑𝑊 𝑠𝑥 =
𝑛

∑
𝑡=1

𝜕𝑧1
𝑡

𝜕𝑊 𝑠𝑥
𝜕𝑠𝑡
𝜕𝑧1

𝑡

𝜕𝐹𝑡−1
𝜕𝑠𝑡

.

27



The weight 𝑊 𝑜 is simpler because it does not affect future losses:

𝑑Lseq

𝑑𝑊 𝑜 =
𝑛

∑
𝑡=1

𝜕L𝑡
𝜕𝑧2

𝑡

𝜕𝑧2
𝑡

𝜕𝑊 𝑜 .

Assuming
𝜕L𝑡
𝜕𝑧2

𝑡
= (𝑔𝑡 − 𝑦𝑡) (which holds for squared loss, softmax-NLL,

etc.), then:
𝑑Lseq

𝑑𝑊 𝑜 =
𝑛

∑
𝑡=1

(𝑔𝑡 − 𝑦𝑡) 𝑠T
𝑡 .

Derive the updates for the offsets 𝑊 𝑠𝑠
0 and 𝑊 𝑜

0 .

28



The problem of long-term dependences

29



The problem of long-term dependences

29



The problem of long-term dependences

29



Long short-term memory

30



Long short-term memory

31



Long short-term memory

32



Long short-term memory

32



Long short-term memory

33



Long short-term memory

[forget gate layer]

𝑓𝑡 = 𝜎 (𝑊𝑓 ⋅ [𝑔𝑡−1, 𝑥𝑡] + 𝑏𝑓)

34



Long short-term memory

[input gate layer]

𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [𝑔𝑡−1, 𝑥𝑡] + 𝑏𝑖)
[new candidate states]

̃𝑆𝑡 = tanh (𝑊𝑆 ⋅ [𝑔𝑡−1, 𝑥𝑡] + 𝑏𝑆)

35



Long short-term memory

[State update]

𝑆𝑡 = 𝑓𝑡 ∗ 𝑆𝑡−1 + 𝑖𝑡 ∗ ̃𝑆𝑡

36



Long short-term memory

[output]

𝑜𝑡 = 𝜎 (𝑊𝑜 [𝑔𝑡−1, 𝑥𝑡] + 𝑏𝑜)
𝑔𝑡 = 𝑜𝑡 ∗ tanh (𝑆𝑡)

37


