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Revisaremos conceptos relacionados con conjuntos difusos, operaciones,
métodos de inferencia y algunas aplicaciones.

(i) Conjuntos difusos, relaciones difusas y operaciones con conjuntos
difusos.

(ii) Mecanismos de inferencia (Mamdaniy Takagi-Sugeno).

(iii) Entrenamiento data-driven (modelos neuro-difusos).



Soft Computing

e Aprovecha el poder del razonamiento y aprendizaje similares a los
humanos para resolver problemas complejos.

e Logica Difusa: Se ocupa del razonamiento y la toma de decisiones
basados en grados de verdad.

e Permite un razonamiento mas flexible y se acomoda mejor a
problemas que poseen algin grado de incertidumbre.

e Redes Neuronales, Algoritmos Genéticos, Optimizacion por
Enjambre de Particulas, Optimizacién por Colonia de Hormigas, etc.
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Conjuntos difusos

e La logica difusa se sustenta en la teoria de conjuntos difusos.
e El concepto de conjuntos difusos fue introducido por Lotfi Zadeh
(1965).

Responden a las limitaciones de los conjuntos nitidos que solo consideran elementos con
caracteristicas muy definidas — existe limite claro para el conjunto.
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Conjunto nitido (crisp)

Sea X el conjunto universal (conjunto de interés, por ejemplo,
temperatura, velocidad, etc.)

Un conjunto nitido A se define mediante una funcién caracteristica
XA ¢ X = {07 1}

que asigna los valores 1 0 0 a cada elemento z € X, dependiendo de si
x perteneceonoa A.

La verdad o falsedad de la afirmaciéon “x pertenece a A” se determina por
elpar (, x 4(2)).



Conjunto difuso

Un conjunto difuso A se define mediante una funcién de pertenencia
g - X — [07 1]
que describe el grado de pertenencia de los elementos en X.

Los valores de i 4 () mas cercanos a 1 denotan un mayor grado de
pertenencia.

El grado en el que la afirmacion “x pertenece a A” es verdadera se
determina por el par (x, p4()).



Enfoques para abordar la incertidumbre
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Fuzzy Logic
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Fuzzy Logic
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Modelos con conjuntos difusos
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scikit-fuzzy

{ T

scikit-fuzzy 0.4.2
pip install scikit-fuzzy
Fuzzy logic toolkit for SciPy

Navegacién Descripcién de proyecto
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D Histérico de versiones This package useful tools fo

& Archivos de descarga
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& Homepage

& Download
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Home User Guide Example Gallery API Documentation © Source

SciKit-Fuzzy

Scikit-Fuzzy is a collection of fuzzy logic algorithms intended for use in the SciPy Stack, written in the
Python computing language.

This SciKit is developed by the SciPy community. Contributions are welcome! Please join us on the
mailing list or our persistent chatroom on Gitter.IM.

Homepage and package documentation
http://pythonhosted.org/scikit-fuzzy/

Source, bugs, and development
http://github.com/scikit-fuzzy/scikit-fuzzy

Gitter.IM
https://gitter.im/scikit-fuzzy/scikit-fuzzy
Mailing List

http://groups.google.com/group/scikit-fuzzy

Search documentation ...

Navigation

Documentation Home

Previous topic

skfuzzy 0.2 docs

Next topic
API Reference

Contents

SciKit-Fuzzy
Homepage and package
documentation
Source, bugs, and development
Gitter.IM

Mailing List

© Copyright the scikit-fuzzy development team. Created using Bootstrap and Sphinx. Thanks to scikit-image team's template.




Home User Guide Example Gallery API Documentation

General examples

General-purpose and introductory examples for the scikit.

Fuzzy Control Systems:
Advanced Example

% L N

The Tipping Problem - The Fuzzy Control Systems: The
Hard Way Tipping Problem

© Source

Defuzzification

Search documentation ...

Navigation

Documentation Home

Previous topic

License

Next topic

Fuzzy c-means clustering



pyFTS

Table of Contents.

PYFTS - Fuzzy Time Series for
Python

= What is pyFTS Library?

= How to reference pyFTS?
« Indexes

PYFTS Quick Start

Show Source

uiccsearcn |

PYFTS 1.7 documentation » pyFTS - Fuzzy Tim.

PYFTS

pYFTS - Fuzzy Time Series for Python

What is pyFTS Library?

L

GPLV3 Made with Python

This package is intended for students, researchers, data scientists or whose want to exploit the Fuzzy Time Series met-
hods. These methods provide simple, easy to use, computationally cheap and human-readable models, suitable from
statistic laymans to experts.

This tool s developed on MINDS Lab, headed by Prof. Frederico Gadelha Guimardes from Electrical Engineering Depar-
Federal University of Minas Gerais (UFMG) at Brazil. Also colaborate with this tool the Brazilian instituitions.
Federal Institute of North of Minas Gerais (FNMG) and Federal Institute of Minas Gerais (IFMG) .

MINDS UFmG u;
——e——— — mr‘EsI;It'luA'P
wJ Nore de s Gras

APl Documentation:

IFMG

* RYETS Quick Start

o How to install pyFTS?

© Whatare Fuzzy Time Series (FTS?

o Usage examples

o A short tutorial on Fuzzy Time Series
* RYETS

= submodules
« pYETS.conf module
= Module contents




Conjuntos difusos y operaciones
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Funcion de pertenencia (MF)

Existen varias funciones paramétricas que se pueden utilizar como
Funcién de pertenencia: 11,4 : R — [0, 1].
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Funcion de pertenencia (MF)

Existen varias funciones paramétricas que se pueden utilizar como
Funcién de pertenencia: 11,4 : R — [0, 1].

Algunas funciones de membresia

1.0

.©
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® 0.2

© 0.0

0 2 4 6 8 10

— Hi(x; 0, 1, 2) = Htrap(X; 5, 6, 7, 8)
= Ugauss(X; 3, 0.6) — Usingi(X; 9)
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Grado de pertenencia
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MF triangular:

(x—a)/(b—a) sia<z <D,
pa(x)=1 (c—x)/(c—=b) sib<z<eg,
0 en otro caso.
_[(T—a c—x
e =0 (122 £53))

MF con forma Gaussiana:

i) = enp (10

g
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Grado de pertenencia
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MF trapezoidal:

(z—a)/(b—a)
(@=1

fia (d—x)/(d—c)
0

sia < x <,
sib <z <g,
sic < x <d,
en otro caso.
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L Msingl(X; 2)

MF trapezoidal:

(r—a)/(b—a) sia<z <),
() 1 sib <z <g,
HAT) = (d—2)/(d—¢) sic<z<d,
0 en otro caso.
MF singleton:

() = 1 siz=aqa,
HAT) =9 0 enotro caso.
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Ejemplo

Defina conjuntos difusos para representar las afirmaciones:
i. "x estd alrededor de M"

iii. "z no estd alrededor de M"
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Algunas propiedades
Sea A un conjunto difuso en X con MF 1 4 ().

Soporte: Es el subconjunto nitido de X donde y 4 () es mayor que cero,
es dedir,

supp(A) = {z | p4(z) > 0}

Algunas funciones de membresia

g
=)

©
g
© 08
c
a
£0.6
o]
a
V0.4
o
S
® 0.2
o
0.0
0 2 4 6 8 10
= Mei(x; 0, 1,2) = Mrap(X; 5, 6,7, 8)
= Hgauss(X; 3, 0.6)  —— Ugingi(x; 9)
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Algunas propiedades
Sea A un conjunto difuso en X con MF 1 4 ().

Nucleo: Es el subconjunto nitido de X donde 114 () es uno, es decir,

core(A) = {x|py(z) =1}

Algunas funciones de membresia

1.0
©
2
Sos8
c
[]
£06
[]
Q
V0.4
kel
(=]
-E 0.2
G)
0.0
0 2 4 6 8 10
— Uyi(x; 0, 1, 2) —_— IJtrap(X; 5,6,7,8)
— IJgauss(Xi 3,0.6) — [Jsing\(X; 9)
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Algunas propiedades
Sea A un conjunto difuso en X con MF 1 4 ().

Altura: Es el supremo de 114 (), es decir,

hgt(A) = sup 4 ()

reX
Algunas funciones de membresia
o 10
2
o8
c
[
£ 0.6
[
Qo
0.4
el
S
g 0.2
o
0.0
0 2 4 6 8 10
— Uyi(x; 0,1, 2) —_— Iltrap(xi 5,6,7,8)
— Hgauss(X; 3, 0.6) == Usingi(X; 9)
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Algunas propiedades
Sea A un conjunto difuso en X con MF 1 4 ().

Normalidad: A es normal si existe al menos un valor de 2 € X tal que

pra(x) = 1.
Algunas funciones de membresia
© 1.0
2
o8
C
[
£ 0.6
[
[}
0.4
©
3
g 0.2
(G]
0.0
0 2 4 6 8 10
= Uri(x; 0,1,2) = Htrap(X; 5, 6, 7, 8)
= Ugauss(X; 3, 0.6) — Usingi(X; 9)
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Algunas propiedades
Sea A un conjunto difuso en X con MF 1 4 ().

a~-corte: El a-corte de A es el subconjunto de X donde 1 4(x) > «, es
decir,

u() N\ AL = AU =25
A, ={z|py(r) > af 0.8
0.6 H
Se llama c-corte estricto si la relacion es con el AL =175 : AV =325
simbolo >. 04 A
W, =145 1 ' r AV, =355
0.2 '
: x
1 2 3 4 5
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Algunas propiedades

Sea A un conjunto difuso en X con MF pi 4 ().

Convexidad: A es convexo si cada uno de sus ci-cortes son convexos.

Algunas funciones de membresia

1.0
©
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© 08
c
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£ 0.6
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0.4
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® 0.2
G
0.0
0 2 4 6 8 10
— Uui(x; 0, 1, 2) = Htrap(X; 5, 6, 7, 8)
== Hgauss(X; 3, 0.6)  —— Ugingi(x; 9)
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Interseccion: norma triangular (t-norma)

Es una funcién de la forma:

T:[0,1] x [0,1] — [0, 1]
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Interseccion: norma triangular (t-norma)

Es una funcién de la forma:

T:[0,1] x [0,1] — [0, 1]

Se usa para representar la conjuncion logica y.

Considere z,z , v,y , z € [0,1].
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Interseccion: norma triangular (t-norma)

Es una funcién de la forma:

T:[0,1] x [0,1] — [0, 1]

Se usa para representar la conjuncion logica y.

Considere z,z , v,y , z € [0,1].

Las t-normas deben cumplir las siguientes propiedades:

Simetria T(z,y) =T(y,x)
Asociatividad T
Monotonia T
Identidad T




Interseccion - ejemplo
Sean A; y A, dos conjuntos difusos triangulares con MFs 114 (73 1,2,3), pa_ (252, 3,4).

1.0

Dos t-normas muy usadas son:

g
@

Thin(@,y) = min(z, y)
* Tproba (xv y) =Y

Grado de pertenencia

0 1 2 3 4 5

— i 1,2, 3)  —i(x; 2, 3, 4)




Interseccion - ejemplo
Sean A; y A, dos conjuntos difusos triangulares con MFs 114 (73 1,2,3), pa_ (252, 3,4).

1.0

Dos t-normas muy usadas son:

g
@

Thin(@,y) = min(z, y)
* Tproba (xv y) =Y

Grado de pertenencia

0 1 2 3 4 5

— i 1,2, 3)  —i(x; 2, 3, 4)

Supongamos x = 2.1
MA2<2-1) =0.1



Interseccion - ejemplo
Sean A; y A, dos conjuntos difusos triangulares con MFs 114 (73 1,2,3), pa_ (252, 3,4).

1.0

Dos t-normas muy usadas son:

o
@

Thin(@,y) = min(z, y)
" Tproba (xv y) =2y

Grado de pertenencia

0 1 2 3 4 5

— i 1,2, 3)  —i(x; 2, 3, 4)

Supongamos x = 2.1 .
fa (2.1) = 0.9 Toin = min(pig (2.1), 114, (2.1))

fia,(2.1) =0.1 =min(0.9,0.1) = 0.1



Interseccion - ejemplo
Sean A; y A, dos conjuntos difusos triangulares con MFs 114 (73 1,2,3), pa_ (252, 3,4).

1.0

Dos t-normas muy usadas son:

o
@

Thin(@,y) = min(z, y)
" Tproba (xv y) =2y

Grado de pertenencia

0 1 2 3 4 5

— i 1,2, 3)  —i(x; 2, 3, 4)

Supongamos x = 2.1 .
g (21) =0.9 Tmin - mln(ILLAl (21)7 IIJ/A2 (21)> Tproba - ILLA1 (21) * /’l’A2 (2]‘)
1

fa,(2.1) = 0.1 = min(0.9,0.1) = 0.1 —0.9%0.1=0.09



Interseccion - ejemplo

Sean A; y A, dos conjuntos difusos triangulares con MFs 114 (731,2,3), pa_ (252, 3,4).

1.0
.8 0.8 Tmin = min(uAl (‘/I;)7 /'LAQ ((Z'))
é Tproba = :uAl (I) * /LA2 <T>
_g 0.6
g
S04
3
o
Q0.2

0.0

0 1 2 3 4 5
—pi(% 1, 2, 3) Tonin

—Li(X; 2, 3,4) = Tproba
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T-normas comunmente utilizadas

minimum
tukasiewicz
probabilistic

weak

Hamacher
Dubois y Prade

Yager

MIN(z,y) = min(z,y)
LAND(z,y) = max(z +y —1,0)
PAND(z,y) = xy

_f min(z,y) si max(z,y) =1
WEAK (z,y) = 0 en otro caso
DAND,(2,y) = momaar @ €[0,1]

YAND,(z,y) =1 —min(L, [(1 — 2)? + (1 —y)"]7),

p>0




s
§ 1.0
c 0.8
2
g 0.6
v 0.4
0 0.2
. P © 0.0 c ‘ ‘ ‘ ‘ :
1 2 3 4 5 6 9 1 2 3 4 5 6
—friap(Xi 1, 2,3,4) == Toroea | — (X 1.5, 3.75,45) == Torops
—flgauss(X; 3, 1) sen Tk — 01X 4) .
Tmin Tmin
2 o©
g 08 €0.8
2 g
il 0.6 5 0.6
Q o
(] 0.4 0] 0.4
0 0.21 00.2
©0.01 0.0 . ‘ . : ; :
1 2 3 4 5 6
w—(1i(X; 1.5,3.75,4.5) == Tpopa | m—lgauss(X; 3,0.5) == Tprona
w— (1i(X; 1.5, 3.75, 4.5) e Tk — o uss(X; 4, 0.5) e To

Trin Tiin
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Ha,

Ha,

1.0

0.81

0.6 q

0.4

0.21

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0.0

0.909
0.808
0.707
0.606
0.505
0.404
0.303
0.202
0.101
0.000

0.909
0.808
0.707
0.606
0.505
0.404
0.303
0.202
0.101
0.000

0.2

0.4

0.6

0.8

0.909
0.808
0.707
0.606
0.505
0.404
0.303
0.202
0.101
0.000

0.909
0.808
0.707
0.606
0.505
0.404
0.303
0.202
0.101
0.000



36

Union: conorma triangular (t-conorma)

Es una funcion de la forma

S :[0,1] x [0,1] = [0,1]
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Union: conorma triangular (t-conorma)

Es una funcion de la forma

S :[0,1] x [0,1] = [0,1]

Se usa para representar la disyuncion logica o.

Considere z,z , v,y , z € [0,1].

Las t-conormas deben cumplir las siguientes propiedades:

Simetria S(
Asociatividad S(z,S(y,2)) =S(S(x,y), 2)
Monotonia S(z,y) <

Identidad concero  S(z,0) =z
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Union - ejemplo

Sean A; y A, dos conjuntos difusos triangulares con MFs 114 (73 1,2,3), pa_ (252, 3,4).

I
o

Dos t-conormas muy usadas son:

o
@

Smin(xvy) - maX(Ly)
Sproba(m>y> =r+ y—xy

Grado de pertenencia
o S
= >

o
N

o
o

[ 1 2 3 4 5
—i(X 1,2, 3)  —i(X; 2, 3, 4)



Union - ejemplo

Sean A; y A, dos conjuntos difusos triangulares con MFs 114 (73 1,2,3), pa_ (252, 3,4).

g
o

Dos t-conormas muy usadas son:

o
@

Sein(2,y) = max(z,y)
Sproba(m> y) =T +y—ay

o
)

Grado de pertenencia
°
=

o
N

14
o

[ 1 2 3 4 5
—i(X 1,2, 3)  —i(X; 2, 3, 4)

Supongamos x = 2.1

i (2.1) = 0.1

37



Union - ejemplo

Sean A; y A, dos conjuntos difusos triangulares con MFs 114 (73 1,2,3), pa_ (252, 3,4).

I
o

Dos t-conormas muy usadas son:

o
@

Sein(2,y) = max(z,y)
Sproba(m7 y) =T +y—ay

Grado de pertenencia
o S
= >

o
N

o
o

[ 1 2 3 4 5
—i(X 1,2, 3)  —i(X; 2, 3, 4)

Supongamos x = 2.1 B
Ha, (21) =0.9 Smax - max(MAl <2'1>7MA2 (21))

fia,(2.1) = 0.1 =max(0.9,0.1) = 0.9

37



Union - ejemplo

Sean A; y A, dos conjuntos difusos triangulares con MFs 114 (73 1,2,3), pa_ (252, 3,4).

I
o

Dos t-conormas muy usadas son:

o
@

Stin(7,y) = max(z,y)
Sproba($> y) =z + y—xy

Grado de pertenencia
o S
= >

o
N

o
o

[ 1 2 3 4 5
—i(X 1,2, 3)  —i(X; 2, 3, 4)

Supongamos x = 2.1
La (21) =0.9 Smax - max(luAl <2'1>7MA2 (21)) Sproba - /‘LAl (21) + luA2 (2]‘)
1

fia,(2.1) =0.1 =max(0.9,0.1) = 0.9 — g, (2.1) % gy (2.1)
=091

37
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1.0

o o o
S o o)

Grado de pertenencia

o
N

0.0

Union - ejemplo

Sean A; y A, dos conjuntos difusos triangulares con MFs 114 (731,2,3), pa_ (252, 3,4).

— (1i(X; 1, 2, 3)
—1i(X; 2, 3, 4)

Smax = max(MAl (ZIJ), MAQ (‘T))
Sproba = Ha, (T)—’—I['I/Az (‘T)_IMAl <$)*MA2 (/L>



39

T-conormas comunmente utilizadas

maximum MAX (z,y) = max(z,y)
tukasiewicz LOR(z,y) = min(x +y, 1)
probabilistic POR(z,y) =x+y—ay

max(z, si min(z,y) =0
strong STRONG(z,y) =4 o en otr<o cla/lo
Hamacher HOR, (v,y) = %, v=>0

Yager YORp(x,y) = min(]~7 W)a p > 0
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Grado de pertenencia

Grado de pertenencia

Grado de pertenencia

—fap(Xi 1,2,3,4) == Spop
—flgauss(X; 3, 1) == Suk

Smax

1 2 3 4 5
w—(li(X; 1.5, 3.75,4.5) == S,0p,
m—lsingi(X; 4) s Sluk

Smax

Grado de pertenencia

m—1yi(X; 1.5,375,4.5) == Sy,
m—(1i(%; 1.5,375,4.5) === Sy

Smax

m—(lguss(X; 3,0.5) == Sy,
m—flgauss(X; 4, 0.5) = Sy

Smax
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0.909
0.808
0.707
0.606
0.505
0.404
0.303
0.202
0.101
0.000

0.909
0.808
0.707
0.606
0.505
0.404
0.303
0.202
0.101
0.000

0.909
0.808
0.707
0.606
0.505
0.404
0.303
0.202
0.101
0.000

0.909
0.808
0.707
0.606
0.505
0.404
0.303
0.202
0.101
0.000
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Complemento

Sea A un conjunto difuso en X — p1 4 () se interpreta como el grado en que z pertenece a A.
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Complemento

Sea A un conjunto difuso en X — p1 4 () se interpreta como el grado en que z pertenece a A.
Sea cA el complemento difuso de A de tipo c.

f. 4 () se interpreta como el grado en que z pertenece a cA y como el grado en que x no
pertenece a A.
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Complemento

Sea A un conjunto difuso en X — p1 4 () se interpreta como el grado en que z pertenece a A.
Sea cA el complemento difuso de A de tipo c.

Hen (m) se interpreta como el grado en que x pertenece a cA 'y como el grado en que = no
pertenece a A.

Un complemento difuso ¢ tiene la forma ¢ : [0, 1] — [0, 1], que asigna un valor ¢(p 4 (x)) a
cada grado de pertenencia fi 4 ().
Se deben cumplir (al menos) las siguientes condiciones:

Condicionesde borde ¢(0) =1ye¢(1) =0
Monotonia c(x) > c(y),siz < yparatodo z,y € [0,1]

Otras dos condiciones deseables son la continuidad y la involucién, esto es, c(c(x)) = z,
x € [0,1].



Complemento - ejemplo

Determine los complementos difusos de los siguientes conjuntos:
i. Ay con MF triangular fi4 (5 1,2,3).
ii. A, con MF Gaussiana ji4 (2;2,0.5).

iii. A con MFsingleton riy (2;0.3).
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emplo

- @]

Complemento

e ® 9 % o °o @ © ¥ 8 9
4~ S o© o o© o s oS oS o o
epuauapad ap opesn ejuauapad ap opel
e ® 9 % o o [ T . T
4~ S o© o© o© o s oS oS o o
eusuaIad 9p opel epuauaLIRd ap opel
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Relaciones difusas
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Relaciones difusas

Una relacion representa la asociacién, interaccion o interconexién entre
los elementos de dos o mas conjuntos.

Una relacion difusa definida en los conjuntos X, X,,..., X, esun
subconjunto difuso de X| x X, x -+ x X, .

Consideremos el conjunto X X Y = {(z,y)|lr € X,y € Y'}.

Una relacion difusa definida en X X Y'se representa mediante la funcion

de pertenencia:
pp: X xY —[0,1]
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Relaciones difusas

Ejemplos de relaciones “linglisticas” comunes que pueden describirse
mediante relaciones difusas:

e “x es mucho mayor que y"
e “x estd cercade "

¢ "2 ey son casiiguales”

e “T ey estan muy lejos”
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Considere 2,y € {1,2, 3,4}, larelacién “z es mucho mayor que y”se puede representar

mediante:
x

r+vy

pr(T,y) =

zfy[ 1 2 3 4
1 ]05 033 025 0.20
2 1067 0.5 040 0.33
3 10.75 0.60 0.5 0.43
4 1080 0.67 0.57 0.5

Esta funcion asigna valores cercanos a 1 cuando
x >> 9, 0.5cuando x = yy cercanosa0
cuando r < .
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Considere 2,y € {1,2, 3,4}, larelacién “z es mucho mayor que y”se puede representar

mediante:
x

T4y
zfy[ 1 2 3 4

pr(T,y) =

1 105 033 025 0.20
2 1067 05 040 0.33
3 10.75 0.60 0.5 043
4 10.80 0.67 0.57 0.5

Esta funcion asigna valores cercanos a 1 cuando

x >> 9, 0.5cuando x = yy cercanosa0
cuando r < .

1

pr(T,y) = 1+ e ol@y0ph

Usandoar =2y (3 = 1:

z/y| 1 2 3 4
1 10.12 0.02 0.00 0.00
2 10.50 0.12 0.02 0.00
3 1088 0.50 0.12 0.02
4 1098 0.88 0.50 0.12

Note que se puede ajustar cuan abrupta es la
relacién modificando los parametros cvy 3.



49

Operaciones con relaciones difusas

i. Intersecciéon basada en t-normas: Sea 7'una t-normay sean
pg(x,y)y pe(x,y) dos relaciones difusas binarias en X X Y.

La interseccion de las relaciones difusas Ry (5 es:

trne(@,y) = T(pgp(z,y), pe(z,y), (z,y) € X XY
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Operaciones con relaciones difusas

ii. Unién basada en t-conormas: Sea S'una t-conormay sean (i (2, y)
y pi(x, y) dos relaciones difusas binarias en X x Y.

La unién de las relaciones difusas Ry (G es:

troc (@ y) = S(up(@,y), pe(z,y)), (2,y) € X XY
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Operaciones con relaciones difusas

iii. Composicién sup-T: Sea T'una t-normay sean iy (z,y) Y (Y, 2)
dos relaciones difusas binarias definidasen X X Yy Y x Z,
respectivamente.

La composicién sup-T de Ry (G, denotada por ,u,ROG(y, z), se define
como:

MRoG(ya Z) - Slé%)/T(,uR(’L‘, y)MG(?J, Z)), (aj7 y) € X X Y7
Y

(y,2) €Y x Z
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Ops con relaciones difusas - ejemplo

R ="x es mucho menor que y", G ="z es muy cercano a y".



Ops con relaciones difusas - ejemplo

R ="x es mucho menor que y", G ="z es muy cercano a y".

R(x,y) = G(x,y) =
Y Y2 Y3 Yy Y Y2 Y3 Yy
z; 0.5 0.1 0.1 0.7 z; 04 0 09 0.6
o, 0 08 0 0 z, 09 04 05 0.7
rzg 03 0 08 0.5

z, 0.9 1 07 08

52
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Ops con relaciones difusas - ejemplo

R ="x es mucho menor que y", G ="z es muy cercano a y".

R(z,y) = G(z,y) =
Y Y2 Ys Yy Y Y2 Ys Yy
z; 05 0.1 0.1 0.7 z; 04 0 09 0.6
o, 0 08 0 0 z, 09 04 05 0.7
z3 09 1 07 08 rzg 03 0 08 0.5
(RNG)(z,y) = (RUG)(z,y) =
Y Y2 Ys Ys Y1 Y2 Y3 Ya
L1 Iy
Lo Lo
T3

L3
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Ops con relaciones difusas - ejemplo

R ="x es mucho menor que y", G ="z es muy cercano a ¥".

Estas relaciones se pueden definir de la
siguiente manera:

,LLR(.T, y) — 6_(‘73_3/)2

%’ sia<xr—y<0
pe(z,y) = siv —y > a

1
0 en otro caso

4 22 0 2 4
X-y
=== R’ = "x —y es mucho menor que 0"
=== G’ ="Xx—y es cercano a 0"
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Ops con relaciones difusas - ejemplo

R ="x es mucho menor que y", G ="x es muy cercano a y".




Ops con relaciones difusas - ejemplo

R ="x es mucho menor que y", G ="x es muy cercano a y/".

;:
® 1.00
3 0.75
0.50
>_0.25
=0.00
4
Y "o o 2 X y
R n G, Tproba
;E
2 1.00
o 0.75
050
o025
—0.00
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Ops con relaciones difusas - ejemplo

R ="x es mucho menor que y", G ="x es muy cercano a y/".

R G R UG, Smax

0

X
R U G, Sproba

5

2 1.00
o 0.75
< 0.50
o025
—0.00
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Implicacion

Una implicacién difusa es una extension de la implicacion clasica p — gq.
Es una funcién de laformaI : [0, 1] x [0, 1] — [0, 1].

Para cualquier valor de verdad posible a y b de dos proposiciones difusas
Py q, respectivamente, otorga el valor de verdad I(a, b) de la
proposicién condicional:

“si p, entonces ¢".
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Implicacion

Consideremos las dos proposiciones difusas p = “x estden A''y ¢="y
estd en B", donde Ay B son conjuntos difusos caracterizados por las
MFs 4 () y g (y), respectivamente.

La afirmacion de implicacién p — g se representa mediante la MF

tasp(@y) = Wpy(x), up(y))
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Implicacion

o S-implicaciones. Surgen del formalismo booleanop — ¢ = —p V ¢
y se definen como

Lpa(z), pp(y)) = S(N(a()), pp(y))

S es una t-conormay /N es una negacién. Ejemplos: tukasiewiczy
Kleene-Dienes.

o Implicaciones de t-norma. Si /’es una t-norma, entonces

Lpa(z), pp(y) =T(pa(x), np(y))

Ejemplos: Mamdaniy Larsen.
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Operadores de implicacion

Zadeh
tukasiewicz
Mamdani
Larsen

standard strict

Godel

Gaines

Kleene-Dienes
Kleene-Dienes-tukasiewicz
Yager

I(z,y) = max(1 — z, min(z,y))
I(x,y) = min(1, 1—w+y>
I(z,y) = min(z,y)
I(z,y) =y
1 six <y
I(z,y) = 0 en otro caso
1 six <y
-7; ?J
Y en otro caso
1 siz <y
I(z,y) = % en otro caso
L(z,y) = max(1 —z,y)
I(z,y) =1—z+uay
I(z,y) =y"




Grado de pertenencia
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Variables linguisticas y razonamiento
aproximado
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Variables lingiiisticas

Matematica — variables toman valores numéricos.



63

Variables lingiiisticas
Matematica — variables toman valores numéricos.

Légica difusa — variables toman valores en un lenguaje natural o
artificial (Zadeh, 75).



63

Variables lingiiisticas
Matematica — variables toman valores numéricos.

Légica difusa — variables toman valores en un lenguaje natural o
artificial (Zadeh, 75).

Por ejemplo, "edad” es una variable linglistica si sus valores son
lingdisticos. Ejemplo:

edad € {joven, no joven, muy joven, bastante joven, viejo, no muy viejo y no muy joven, etc. }
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Variables lingiiisticas
Matematica — variables toman valores numéricos.

Légica difusa — variables toman valores en un lenguaje natural o
artificial (Zadeh, 75).

Por ejemplo, "edad” es una variable linglistica si sus valores son
lingdisticos. Ejemplo:

edad € {joven, no joven, muy joven, bastante joven, viejo, no muy viejo y no muy joven, etc. }

Estos valores son llamados términos lingiisticos o etiquetas
lingiiisticas.
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Grado de pertenencia
o o o o -
N = > © o

o
IS

Variables lingiiisticas - ejemplo

Variable lingUistica "estatura"

150 160 170 180 190 200
Estatura

== Muy bajo: ump(Xx; 149,150,170) === Medio: uy(x; 170,180,190) === Muy alto: uma(x; 190, 210,211)
=== Bajo: up(x; 150,170, 180) = Alto: ua(x; 180, 190, 200)

210
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Variables lingiiisticas

Las variables lingiiisticas proporcionan un medio de caracterizacion
aproximada de fenémenos que son dificiles de describir en términos
precisos.
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Variables lingiiisticas

Las variables lingiiisticas proporcionan un medio de caracterizacion
aproximada de fenémenos que son dificiles de describir en términos
precisos.

Es la base para el razonamiento aproximado (Zadeh, 1979).
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Variables lingiiisticas

Las variables lingiiisticas proporcionan un medio de caracterizacion
aproximada de fenémenos que son dificiles de describir en términos
precisos.

Es la base para el razonamiento aproximado (Zadeh, 1979).

Principales aplicaciones del enfoque linglistico se encuentran en el
ambito de los sistemas humanisticos.

Inteligencia artificial, procesos de toma de decisiones, reconocimiento de patrones, psicologia,
derecho, diagnéstico médico, recuperacién de informacion, economia.
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Razonamiento aproximado

La regla de inferencia mds importante es el modus ponens generalizado
(GMP).
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(GMP).

Esta regla de inferencia deriva de su contraparte clasica:

premisa Si p entonces q
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Razonamiento aproximado

La regla de inferencia mds importante es el modus ponens generalizado
(GMP).
Esta regla de inferencia deriva de su contraparte clasica:

premisa Si p entonces q
hecho p




66

Razonamiento aproximado

La regla de inferencia mds importante es el modus ponens generalizado
(GMP).

Esta regla de inferencia deriva de su contraparte clasica:

premisa Si p entonces q
hecho p
consecuencia q
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Razonamiento aproximado

La regla de inferencia mds importante es el modus ponens generalizado
(GMP).

Esta regla de inferencia deriva de su contraparte clasica:

premisa Si p entonces q
hecho p
consecuencia q

Dadalareglap — ¢:
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Razonamiento aproximado

La regla de inferencia mds importante es el modus ponens generalizado
(GMP).

Esta regla de inferencia deriva de su contraparte clasica:

premisa Si p entonces q
hecho p
consecuencia q

Dadalareglap — ¢:
Si p es verdadero, entonces ¢ es verdadero.
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Razonamiento aproximado

La regla de inferencia mds importante es el modus ponens generalizado
(GMP).

Esta regla de inferencia deriva de su contraparte clasica:

premisa Si p entonces q
hecho p
consecuencia q

Dadalareglap — ¢:
Si p es verdadero, entonces ¢ es verdadero.

Si —q es verdadero, entonces se tiene —p.



67

Modus ponens generalizado

Modus ponens generalizado — se basa en la regla de inferencia
composicional de Zadeh.
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Modus ponens generalizado

Modus ponens generalizado — se basa en la regla de inferencia
composicional de Zadeh.

premisa Six es A entonces yes B
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Modus ponens generalizado

Modus ponens generalizado — se basa en la regla de inferencia
composicional de Zadeh.

premisa Six es A entonces yes B
hecho zres A
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Modus ponens generalizado

Modus ponens generalizado — se basa en la regla de inferencia
composicional de Zadeh.

premisa Six es A entonces yes B
hecho zres A

. 7
consecuencia yes B
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Modus ponens generalizado

Modus ponens generalizado — se basa en la regla de inferencia
composicional de Zadeh.

premisa Six es A entonces yes B
/
hecho resA
. 7
consecuencia yes B

/
A, A son conjuntos difusos definidos en el mismo universo, pero no
necesariamente son iguales. Lo mismo ocurre para By B .
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Modus ponens generalizado

Modus ponens generalizado — se basa en la regla de inferencia
composicional de Zadeh.

premisa Six es A entonces yes B
/
hecho resA
. 7
consecuencia yes B

/ . . . . . .
A, A son conjuntos difusos definidos en el mismo universo, pero no
necesariamente son iguales. Lo mismo ocurre para By B .

“Si x es A entonces y es B" y si ocurre el hecho A’ (similar a A), se
espera un evento B’ (también similar a B).
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premisa
hecho

Si x es A entonces 3y es B
res A’

consecuencia

;Coémo calcular B’?

yes B’
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premisa Si z es A entonces iy es B
hecho res A
consecuencia yes B’

;Cémo calcular B’? Combinando el hecho y la relacién difusa resultante de la implicacién. Esto
es:
B"'=A"o(A— B)
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premisa Si z es A entonces iy es B
hecho res A

consecuencia yes B’

;Cémo calcular B’? Combinando el hecho y la relacién difusa resultante de la implicacién. Esto
es:

B ' =A"0o(A— B)
La MF de B’ resultante es:
pp (y) = SEE(T{MA’('I):MAAB(x?y)}a yey,
X

donde:

e Tesunat-norma.

e (4, p(x,y) resulta de evaluar algin operador de implicacion en las MFs de Ay B, esto
es, t4(x)y pp(y), respectivamente.
e (i 4/(x) esla MF del conjunto A’.
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premisa Si z es A entonces iy es B
hecho res A

consecuencia yes B’

;Cémo calcular B’? Combinando el hecho y la relacién difusa resultante de la implicacién. Esto
es:

B = A o(A— B)
La MF de B’ resultante es:
tp (y) = sup Ty (), hasp(@,9)}, Yy €Y,
donde:

e Tesunat-norma.

e (4, p(x,y) resulta de evaluar algin operador de implicacion en las MFs de Ay B, esto
es, t4(x)y pp(y), respectivamente.
e (i 4/(x) esla MF del conjunto A’.

Se puede verificar que el modus ponens generalizado es equivalente al modus ponens cldsico
cuando A’ = Ay B’ = B.
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Razonamiento aproximado

Los sistemas practicos poseen varias reglas si-entonces y la parte
antecedente es una conjuncién o disyuncién de proposiciones difusas.
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Razonamiento aproximado

Los sistemas practicos poseen varias reglas si-entonces y la parte
antecedente es una conjuncién o disyuncién de proposiciones difusas.

Por ejemplo, “z es Ay yes B” “res AoyesB"

Se evalua la parte antecedente con t-normas o t-conormas segin
corresponday se genera la relacion de implicacién para cada regla.

Las reglas son agregadas de dos posibles formas equivalentes:

(@) Lasrelaciones difusas (reglas) se agregan primero y luego se aplica la regla de
inferencia composicional.

(b) Laregla deinferencia composicional se evalta en cada regla y luego los conjuntos
difusos resultantes se agregan.
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Razonamiento aproximado
Considere la base de reglas:

R, Sixes A, entoncesy es C)
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Razonamiento aproximado

Considere la base de reglas:

Sixes A, entoncesy es C)
Six es A, entonces y es C,

Sixzes A, entoncesyesC,
resA
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Considere la base de reglas:

R, Sixes A, entoncesy es C)
R, Six es A, entonces y es C,
R, Sixzes A, entoncesyesC,
Hecho: resA

Consecuencia: yesC

x € X ey € Yson variables lingUisticas.

T(x)={A,...,A,}yT(y) ={C,,...,C,} son los términos

linglisticos de x y y, respectivamente.
72
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Razonamiento aproximado

Se busca encontrar la funcion de membresia de la consecuencia (' a
partir de la base de reglas { R, ..., R, } y el hecho A.

La relacion difusa (implicacidon) que representa la z-ésima regla difusa
si-entonces es:

Rz’ <3:7 y) - I(MAi (ZE), MCi (y))
I(-) es un operador de implicacion.
Luego, se aplica la regla de inferencia composicional para obtener el

conjunto difuso resultante de cada una de las reglas difusas si-entonces
del modelo.
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Razonamiento aproximado

La funcién de membresia del conjunto difuso resultante a partir de la
1-ésima regla, cuando se presenta el hecho A4, es:

pe (Y) = paog, (Y) = sgg(T(uA(w% R(z,y)), y€Y,

donde T'esunat-normaes =1,...,n.
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Razonamiento aproximado

La funcién de membresia del conjunto difuso resultante a partir de la
1-ésima regla, cuando se presenta el hecho A4, es:

pe (Y) = paog, (Y) = sgg(T(uA(w% R(z,y)), y€Y,

donde T'esunat-normaes =1,...,n.

Luego, se aplica una operacién de agregacion para calcular el conjunto
difuso de salida general.
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Razonamiento aproximado

Esta agregacion se realiza utilizando un conectivo que puede ser una

ou_n

operacion de tipo “y” (t-norma) o de “0” (t-conorma),

ne(y) = Agglpe, (Y), ke, (y), yeY

Agg es el operador de agregacion - asumiremos una t-conorma S.
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El modelo Mamdani

También conocido como modelo difuso linglistico — las entradas y
salidas son variables lingtisticas.

Seanz; € Xy,...,x,; € X, lasvariables lingiisticas de entrada.

Seay € Y C Runavariable linguistica de salida.

Términos linguisticos:

(7) .
T(z,) = {AVY, .., A", ., i () e's la Fun(g;on de
T(xy) = {Aél), 71451”)}' membresia de A]. .

T(y) ={By,...,B,}.
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Considere la base de reglas:
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hecho: T,eSTyy...yT esxy
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z;, (j =1,...,d), es un conjunto difuso que actia como una interfaz nitido — difuso.
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Considere la base de reglas:

R, Six, es A(ll) y..yzx,es A&l) entonces yes B,
R, Six, es A(f) y..yx,es Ag) entonces yes B,
R, Six, es A(ln) y..yx,es Agﬂ entonces yes B,
hecho: T,eSTyy...yT esxy
consecuencia:  yesB
z;, (j =1,...,d), es un conjunto difuso que actia como una interfaz nitido — difuso.

Convierte un valor nitido/numérico de x; en un valor difuso mediante la funcién de
pertenencia /i ().

y es el valor inferido a partir de los valores de x4, ... , x5, denotados por 7, ..., x}, se
realiza mediante el GMP.
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Usando el GMP podemos inferir B a partir de la base de reglas disponible
y el hecho.
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Usando el GMP podemos inferir B a partir de la base de reglas disponible
y el hecho.

El valor final 9/ se calcularé aplicando un método de desfusificacién
(conjunto difuso a un valor nitido).

Ry eywgy) = 1| min (pyo(,). np, )

t-norma

donde el operador I(-) es la implicacion.
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Para aplicar la regla de inferencia composicional, el hecho “z, esx; y ...
y z,esx," debe serrepresentado por la t-norma.

Esto requiere que se conozcan las funciones de membresia de los
conjuntos difusos z4, ..., .

Comunmente, se utilizan conjuntos difusos singleton para este propésito,
. / .
es decir, 3 (xj) = 1 solo cuando z; = x; y 0 en caso contrario.

Para los valores de entrada xy = 7, ...,x; = T, el conjunto difuso
resultante de la combinacion del hecho y la regla i-ésima es:

d ’
oy () = sop T T (1 (&), Rix,0) oy,

XEX ]:1 J

donde T(-) esuna t-norma, x = (zy,...,x,)y X = X;x ... xX,.
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pp(y) =sup T

xeX

{

e

(z

) R(xy)}. yeY.
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d /7
oy () = s T{ T (1 (s
‘ xeX Jj=1 J

Teniendo en cuenta T(a, 1) = ay Pz, (lej),j

singleton, tenemos:

) R(xy)}. yeY.

=1, ..., d, son conjuntos difusos



82

d /
oy () = 500 T{ T (1 (a),

xEX j=1 J

Teniendo en cuenta T(a, 1) = ay M, (z;), =

singleton, tenemos:

pp(y) = Ri(x,y),
yeY,x € X

Ri(x7y>}7 yEY,

1,...,d, son conjuntos difusos
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d ’
oy (9) = 500 T{ T (s (@) Bix.) b,y ey,

xeEX j=1 J

Teniendo en cuenta T(a, 1) = ay fiz, (z;),7 =1,...,d, son conjuntos difusos
singleton, tenemos:

pp(y) = Ri(x,y),
yeY,x € X

El conjunto difuso resultante del modelo es:

np(y) = Agg(up (Y), -, pup (y), YyEeY,

Agg es el operador de agregacién (t-conorma .5).
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(i) Calcular larelacién difusa de cada regla.
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Para resumir, el conjunto difuso B se calcula:

(i) Calcular larelacién difusa de cada regla.
Primero, se calcula la t-norma de las premisas (nivel de activacién de la regla 7).

Si se utiliza el operador min como t-norma, el nivel de activacién de la 7-ésima regla es:

oy = min(py” (), .,y ().

(ii) Se evalla el operador de implicaciény se calcula el conjunto difuso de salida de la i-ésima
regla:
pp(y) =Ly, pp (y), YVyey

I(-) es el operador de implicacion (min).
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(iii) Calcular el conjunto difuso resultante B agregando los conjuntos
difusos obtenidos para cada regla en el paso anterior.
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(iii) Calcular el conjunto difuso resultante B agregando los conjuntos
difusos obtenidos para cada regla en el paso anterior.

(iv) Calcular el valor de i mediante cualquier método de des-fusificacién.
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(iii) Calcular el conjunto difuso resultante B agregando los conjuntos
difusos obtenidos para cada regla en el paso anterior.

(iv) Calcular el valor de i mediante cualquier método de des-fusificacién.

Por ejemplo, si se aplica el método habitual de
Centro-de-Area/Gravedad, el valor inferido es:

_ Lyns(y dy
j=
fYMB
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El modelo Takagi-Sugeno-Kang (TSK)

El modelo TSK es una combinacién de un modelo l6gico y matematico.
Se usa la filosofia “dividir y conquistar”.

El antecedente de las reglas borrosas divide el espacio de entrada en
varias regiones locales difusas, mientras que los consecuentes describen
el comportamiento dentro de una region dada.
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La base de reglas de un modelo TSK se puede expresar como:

R, Siz, es A<11> y..yx,es Aill) entonces
f1(x,00) = 0 + 60z, 4 4 0,2, = O/x
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La base de reglas de un modelo TSK se puede expresar como:

Ry

hecho:

Siz, es A<11> y..yx,es Aill) entonces
f06,00) =0 400z + 1 6V, = 0x

Siz, es A(li) y..yx,es Ag) entonces
fi(x,0%) = ‘98) + egl)xl ot egil)xd = Oix

Six, es A(ln) y..yx,es A&") entonces
£ox, 00y =6 4 60z, 4400z, = 0! x
T, =21y yx, =12
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La base de reglas de un modelo TSK se puede expresar como:
R, Siz, es A<11> y..yx,es Aill) entonces

f1(x,00) = 0 + 60z, 4 4 0,2, = O/x

R, Siz, es A(li) y..yx,es Ag) entonces
7 0 1 +1 d d 7

R

Six, es A(ln) y..yx,es A&") entonces

Fo(x,0) = 00" + 6, 4 e 4 0], = O x
hecho: T, =21y yx, =12
consecuencia: ¥

(21, ..., x},) es una realizacién del vector de entrada (x4, ..., ;).
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La base de reglas de un modelo TSK se puede expresar como:
R, Siz, es A<11> y..yx,es Aill) entonces

f1(x,00) = 0 + 60z, 4 4 0,2, = O/x

R, Siz, es A(li) y..yx,es Ag) entonces
7 0 1 +1 d d 7

Six, es A(ln) y..yx,es A&") entonces

R

n
fn<X7/@(n)) = eg)n) ‘l', ng)l’l + ot 0&")% = 0,x
hecho: Ty=21Y.. YTy =Ty
consecuencia: Y
(21, ..., x},) es una realizacién del vector de entrada (x4, ..., ;).
Estos valores se evaltan en las proposiciones del antecedente “x, es Agi)", v T g €S

Ag)" de cada regla, esto es, u(li) (x}), -, ufii) (x)).
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Luego, los valores Mf) (x]), ...

antecedente de la regla.

(4)

7Md

non

() se combinan utilizando una t-norma (conectivo "y

) del
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Luego, los valores Mf) (x]), s uf}) () se combinan utilizando una t-norma (conectivo "y") del
antecedente de la regla.

El resultado de esta operacion es el nivel de activacion de la regla 7-ésima y se calcula mediante:
_ r% (@) (.
w; = T () (a5).
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Luego, los valores Mf) (x]), s uf}) () se combinan utilizando una t-norma (conectivo "y") del
antecedente de la regla.

El resultado de esta operacion es el nivel de activacion de la regla 7-ésima y se calcula mediante:
_ r% (@) (.
w; = T () (a5).

La salida de cada regla se evalta con la funcién lineal del consecuente:

0 00) = 8 4 60 16
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Luego, los valores Mf) (x]), s uf}) () se combinan utilizando una t-norma (conectivo "y") del
antecedente de la regla.

El resultado de esta operacion es el nivel de activacion de la regla 7-ésima y se calcula mediante:
_ r% (@) (.

w; = T (pu;" (7).

Jj=1

La salida de cada regla se evalla con la funcién lineal del consecuente:

0 00) = 8 4 60 16

ol = (Héi), 9(1i>, ey HE;)) es el conjunto de parametros del consecuente de la regla 7-ésima.
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Luego, los valores Mf) (x]), s uf}) () se combinan utilizando una t-norma (conectivo "y") del
antecedente de la regla.

El resultado de esta operacion es el nivel de activacion de la regla 7-ésima y se calcula mediante:

= X
La salida de cada regla se evalta con la funcién lineal del consecuente:

£,(x,00) = 05 + 62, + -+ 0,
o = (Héi), 9(1i>, . HE;)) es el conjunto de pardmetros del consecuente de la regla i-ésima.
Finalmente, la salida de cada regla (activada) se agrega de la forma:

Y w
Y= le Z fia
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Luego, los valores Mf) (x]), s uf}) () se combinan utilizando una t-norma (conectivo "y") del
antecedente de la regla.

El resultado de esta operacion es el nivel de activacion de la regla 7-ésima y se calcula mediante:

= i

La salida de cada regla se evalda con la funcién lineal del consecuente:
e 00 = 6+ 60+ 4 00,
o0 = (Héi), 9(10’ s HE;)) es el conjunto de parametros del consecuente de la regla z-ésima.

Finalmente, la salida de cada regla (activada) se agrega de la forma:

Y w
y_7211 Z w; fi

w, se denomina nivel de activacién normalizado de la regla z-ésima.
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Particion del espacio de entrada

Tres formas tipicas:

Grid partitioning Tree partitioning Scatter partitioning
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Entrenamiento

a. ;Cémo encontrar el conjunto de parametros del modelo, es decir, los
pardmetros de las funciones de membresia y los parametros del
consecuente de los modelos TSK?

b. ;Cémo elegir las variables linglisticas adecuadas?

c. ;Cémo encontrar la estructura del modelo difuso? (la estructura de la
base de reglas).
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a. Conocimiento experto y estrategias basadas en datos.

b. Cuando algun aspecto de un modelo difuso se optimiza o se aprende
a partir de los datos, se utiliza cominmente el término modelo
neuro-difuso.

c. Jyh-Shing R. Jang (1993) propuso uno de los modelos neuro-difusos
pioneros, el modelo ANFIS (Adaptive Network-based Fuzzy Inference
System).
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ANFIS contempla un procedimiento de aprendizaje hibrido:
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ANFIS contempla un procedimiento de aprendizaje hibrido:

a. Minimos cuadrados ordinarios (OLS) para estimar los pardmetros del
consecuente.

b. Aprendizaje basado en descenso de gradiente para determinar los
pardmetros del antecedente.

c. Soluciones alternativas:
Optimizacién no lineal sin gradiente, como los Algoritmos Genéticos.

Clustering difuso (o no) en el espacio producto de las entradas y
salidas.
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Descenso de gradiente

Estrategia de aprendizaje para estimar los parametros del modelo o
refinar una estimacién obtenida por otros métodos (e.g., clustering).
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Decisiones de disefo: especificar una forma para las MFs del
antecedente (Gaussiana), operador t-norma (producto).
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Descenso de gradiente

Estrategia de aprendizaje para estimar los parametros del modelo o
refinar una estimacién obtenida por otros métodos (e.g., clustering).

Decisiones de disefo: especificar una forma para las MFs del
antecedente (Gaussiana), operador t-norma (producto).

Conjunto de datos de entrenamiento:
T = {(Xk,yk)‘xk - IRd,yk c IR,k = 1, ,N}

donde X;, = Xy, vy Tjy -+ 5 Tpg-



A;i) estd data por:

i (z; — V@>2

(d) . L .
y 0.’ son parametros de ubicacion y escala, respectivamente.

donde V@ ;

J
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A;i) estd data por:

i (z; — V@>2

son pardmetros de ubicacién y escala, respectivamente.

(4) ., (%)
donde v;'yo,

Se busca minimizar la funcién de error cuadratico:

1 N

N
B = 52(% — )’ = Z%Ek
k=1

k=1

Uy, es la salida del modelo.
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Yy es la salida del modelo.
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Yy es la salida del modelo.

Para el pardmetro de ubicacién en la iteracion ¢:
@)y . (D) (i)

donde

AV = i 8Ek

J 2
] :51/

7) €s un parametro conocido como tasa de aprendizaje.




El gradiente 6% es:
1

8]




96

El gradie

@k:Z

—8E es:

nte -5
OF 1< A a9
~ 5 Z(yk — Ur) <——k)

8V](Z) k=1 8VJ(Z)

?:1 W,y /1. €s la salida del modelo para la entrada x;,.
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OE .

El gradiente o,
OE 1& ) o
~ 5 Z(yk — Ur) <——k)

o) 245 o,
Yp = 2?21 W,y /1. €s la salida del modelo para la entrada x;,.

w;;. es el nivel de activaciéon normalizado de la regla ¢.



96

IE .

El gradiente o,
OE 1& ) o
~ 5 Z(yk — Ur) <——k>

i
81/]@) k=1 8VJ(Z)

Yp = Z?Zl W,y /1. €s la salida del modelo para la entrada x;,.

w;;. es el nivel de activaciéon normalizado de la regla ¢.

fir es la salida de la salida de la regla 7.



97

Los pardmetros de las premisas, 1/](. ) y O'(~ ), se estiman de manera

iterativa utilizando las siguientes reglas de actualizacion:

N .
V]m ()= v (I—1)+ E 477 (xkj - V]@ (0 =1)wi(fire — U)W — )
k=1

; l—l))

] N
()=o) (1-1) +Z4n sy e D = 90— )
k=1 Uj l_l))
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Estimacion de parametros del consecuente

Se puede plantear este problema usando minimos cuadrados.
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Estimacion de parametros del consecuente

Se puede plantear este problema usando minimos cuadrados.

Se estiman por separado para cada regla:

1 | |
min(y —x.0')'®;(y —x.01)

i

x, = [x; 1] es la matriz de regresores extendida.



Estimacion de parametros del consecuente

Se puede plantear este problema usando minimos cuadrados.

Se estiman por separado para cada regla:

1 | |
in—(y — x. 0. (y — x. O
min—(y — x,0%)"®;(y — x,0)

x, = [x; 1] es la matriz de regresores extendida.

®, es una matriz de la forma:

@y, 0 0
o~ | 0 @ 0
0 0 .. Wy

0 = (xt®;x,) 'x! Dy, parat = 1,...,m.



