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Revisaremos conceptos relacionados con conjuntos difusos, operaciones,

métodos de inferencia y algunas aplicaciones.

(i) Conjuntos difusos, relaciones difusas y operaciones con conjuntos

difusos.

(ii) Mecanismos de inferencia (Mamdani y Takagi-Sugeno).

(iii) Entrenamiento data-driven (modelos neuro-difusos).
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Soft Computing

Aprovecha el poder del razonamiento y aprendizaje similares a los

humanos para resolver problemas complejos.

Lógica Difusa: Se ocupa del razonamiento y la toma de decisiones

basados en grados de verdad.

Permite un razonamiento más flexible y se acomoda mejor a

problemas que poseen algún grado de incertidumbre.

Redes Neuronales, Algoritmos Genéticos, Optimización por

Enjambre de Partículas, Optimización por Colonia de Hormigas, etc.
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Técnicas
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Conjuntos difusos

La lógica difusa se sustenta en la teoría de conjuntos difusos.

El concepto de conjuntos difusos fue introducido por Lotfi Zadeh

(1965).

Responden a las limitaciones de los conjuntos nítidos que solo consideran elementos con

características muy definidas → existe límite claro para el conjunto.
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Lotfi Zadeh
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Conjunto nítido (crisp)

Sea 𝑋 el conjunto universal (conjunto de interés, por ejemplo,

temperatura, velocidad, etc.)

Un conjunto nítido 𝐴 se define mediante una función característica

𝜒𝐴 ∶ 𝑋 → {0, 1}

que asigna los valores 1 o 0 a cada elemento 𝑥 ∈ 𝑋, dependiendo de si

𝑥 pertenece o no a 𝐴.

La verdad o falsedad de la afirmación “x pertenece a A” se determina por

el par (𝑥, 𝜒𝐴(𝑥)).
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Conjunto difuso

Un conjunto difuso 𝐴 se define mediante una función de pertenencia

𝜇𝐴 ∶ 𝑋 → [0, 1]

que describe el grado de pertenencia de los elementos en 𝑋.

Los valores de 𝜇𝐴(𝑥) más cercanos a 1 denotan un mayor grado de

pertenencia.

El grado en el que la afirmación “x pertenece a A” es verdadera se

determina por el par (𝑥, 𝜇𝐴(𝑥)).
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Enfoques para abordar la incertidumbre

Tipo Fuente Método

Aleatoria Métodos

probabilísticos

Epistémica Falta de Teoría de

conocimiento posibilidades

Imprecisión Lógica

difusa

Conflicto Teoría de

Dempster-Shafer
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Fuzzy Logic

Bhatt et al. A Fuzzy Logic Approach for Improved Simulation and Control Washing Machine System Variables, Select

Proceedings of ETAEERE 2020.
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Fuzzy Logic
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Fuzzy Logic
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Fuzzy Logic
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Modelos con conjuntos difusos
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scikit-fuzzy
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pyFTS
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Conjuntos difusos y operaciones
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Función de pertenencia (MF)

Existen varias funciones paramétricas que se pueden utilizar como

función de pertenencia: 𝜇𝐴 ∶ ℝ → [0, 1].
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tri(x; 0, 1, 2)
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trap(x; 5, 6, 7, 8)
singl(x; 9)
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gauss(x; 2, 0.6)

MF con forma Gaussiana:

𝜇𝐴(𝑥) = exp(−(𝑥 − 𝑎)2

𝜎2 )
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singl(x; 2)

MF singleton:

𝜇𝐴(𝑥) = { 1 si 𝑥 = 𝑎,
0 en otro caso.

22



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0
Gr

ad
o 

de
 p

er
te

ne
nc

ia

trap(x; 1, 1.75, 2.25, 3)

MF trapezoidal:

𝜇𝐴(𝑥) =
⎧
{
⎨
{
⎩

(𝑥 − 𝑎)/(𝑏 − 𝑎) si 𝑎 ≤ 𝑥 ≤ 𝑏,
1 si 𝑏 < 𝑥 ≤ 𝑐,
(𝑑 − 𝑥)/(𝑑 − 𝑐) si 𝑐 < 𝑥 ≤ 𝑑,
0 en otro caso.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

Gr
ad

o 
de

 p
er

te
ne

nc
ia

singl(x; 2)

MF singleton:

𝜇𝐴(𝑥) = { 1 si 𝑥 = 𝑎,
0 en otro caso.

22



Ejemplo

Defina conjuntos difusos para representar las afirmaciones:

i. ”𝑥 está alrededor de 𝑀”

iii. ”𝑥 no está alrededor de 𝑀”
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Algunas propiedades

Sea 𝐴 un conjunto difuso en 𝑋 con MF 𝜇𝐴(𝑥).

Soporte: Es el subconjunto nítido de 𝑋 donde 𝜇𝐴(𝑥) es mayor que cero,

es decir,

supp(𝐴) = {𝑥 | 𝜇𝐴(𝑥) > 0}
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Algunas propiedades

Sea 𝐴 un conjunto difuso en 𝑋 con MF 𝜇𝐴(𝑥).
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core(𝐴) = {𝑥 | 𝜇𝐴(𝑥) = 1}
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Algunas propiedades

Sea 𝐴 un conjunto difuso en 𝑋 con MF 𝜇𝐴(𝑥).

Altura: Es el supremo de 𝜇𝐴(𝑥), es decir,
hgt(𝐴) = sup

𝑥∈𝑋
𝜇𝐴(𝑥)
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Algunas propiedades

Sea 𝐴 un conjunto difuso en 𝑋 con MF 𝜇𝐴(𝑥).

Normalidad: 𝐴 es normal si existe al menos un valor de 𝑥 ∈ 𝑋 tal que

𝜇𝐴(𝑥) = 1.
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Algunas propiedades

Sea 𝐴 un conjunto difuso en 𝑋 con MF 𝜇𝐴(𝑥).

𝛼-corte: El 𝛼-corte de 𝐴 es el subconjunto de 𝑋 donde 𝜇𝐴(𝑥) ≥ 𝛼, es
decir,

𝐴𝛼 = {𝑥|𝜇𝐴(𝑥) ≥ 𝛼}

Se llama 𝛼-corte estricto si la relación es con el

símbolo >.
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Algunas propiedades

Sea 𝐴 un conjunto difuso en 𝑋 con MF 𝜇𝐴(𝑥).

Convexidad: 𝐴 es convexo si cada uno de sus 𝛼-cortes son convexos.
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Intersección: norma triangular (t-norma)

Es una función de la forma:

𝑇 ∶ [0, 1] × [0, 1] → [0, 1]

Se usa para representar la conjunción lógica y.

Considere 𝑥, 𝑥′, 𝑦, 𝑦′, 𝑧 ∈ [0, 1].
Las t-normas deben cumplir las siguientes propiedades:

Simetría 𝑇 (𝑥, 𝑦) = 𝑇 (𝑦, 𝑥)
Asociatividad 𝑇 (𝑥, 𝑇 (𝑦, 𝑧)) = 𝑇 (𝑇 (𝑥, 𝑦), 𝑧)
Monotonía 𝑇 (𝑥, 𝑦) ≤ 𝑇 (𝑥′, 𝑦′), si 𝑥 ≤ 𝑥′ y 𝑦 ≤ 𝑦′

Identidad 𝑇 (𝑥, 1) = 𝑥
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Intersección - ejemplo
Sean 𝐴1 y 𝐴2 dos conjuntos difusos triangulares con MFs 𝜇𝐴1

(𝑥; 1, 2, 3), 𝜇𝐴2
(𝑥; 2, 3, 4).
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Dos t-normas muy usadas son:

𝑇min(𝑥, 𝑦) = min(𝑥, 𝑦)
𝑇proba(𝑥, 𝑦) = 𝑥𝑦

Supongamos 𝑥 = 2.1
𝜇𝐴1

(2.1) = 0.9
𝜇𝐴2

(2.1) = 0.1

𝑇min = min(𝜇𝐴1
(2.1), 𝜇𝐴2

(2.1))
= min(0.9, 0.1) = 0.1

𝑇proba = 𝜇𝐴1
(2.1) ∗ 𝜇𝐴2

(2.1)
= 0.9 ∗ 0.1 = 0.09
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Intersección - ejemplo
Sean 𝐴1 y 𝐴2 dos conjuntos difusos triangulares con MFs 𝜇𝐴1

(𝑥; 1, 2, 3), 𝜇𝐴2
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T-normas comúnmente utilizadas

minimum 𝑀𝐼𝑁(𝑥, 𝑦) = min(𝑥, 𝑦)
Łukasiewicz 𝐿𝐴𝑁𝐷(𝑥, 𝑦) = max(𝑥 + 𝑦 − 1, 0)
probabilistic 𝑃𝐴𝑁𝐷(𝑥, 𝑦) = 𝑥𝑦

weak 𝑊𝐸𝐴𝐾(𝑥, 𝑦) = { min(𝑥, 𝑦) si max(𝑥, 𝑦) = 1
0 en otro caso

Hamacher 𝐻𝐴𝑁𝐷𝛾(𝑥, 𝑦) = 𝑥𝑦
𝛾+(1−𝛾)(𝑥+𝑦−𝑥𝑦) , 𝛾 ≥ 0

Dubois y Prade 𝐷𝐴𝑁𝐷𝛼(𝑥, 𝑦) = 𝑥𝑦
max(𝑥,𝑦,𝛼) , 𝛼 ∈ [0, 1]

Yager 𝑌 𝐴𝑁𝐷𝑝(𝑥, 𝑦) = 1 − min(1, [(1 − 𝑥)𝑝 + (1 − 𝑦)𝑝]
1
𝑝 ), 𝑝 > 0
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Unión: conorma triangular (t-conorma)

Es una función de la forma

𝑆 ∶ [0, 1] × [0, 1] → [0, 1]

Se usa para representar la disyunción lógica o.

Considere 𝑥, 𝑥′, 𝑦, 𝑦′, 𝑧 ∈ [0, 1].
Las t-conormas deben cumplir las siguientes propiedades:

Simetría 𝑆(𝑥, 𝑦) = 𝑆(𝑦, 𝑥)
Asociatividad 𝑆(𝑥, 𝑆(𝑦, 𝑧)) = 𝑆(𝑆(𝑥, 𝑦), 𝑧)
Monotonía 𝑆(𝑥, 𝑦) ≤ 𝑆(𝑥′, 𝑦′), si 𝑥 ≤ 𝑥′ y 𝑦 ≤ 𝑦′

Identidad con cero 𝑆(𝑥, 0) = 𝑥
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Unión - ejemplo
Sean 𝐴1 y 𝐴2 dos conjuntos difusos triangulares con MFs 𝜇𝐴1

(𝑥; 1, 2, 3), 𝜇𝐴2
(𝑥; 2, 3, 4).
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Dos t-conormas muy usadas son:

𝑆min(𝑥, 𝑦) = max(𝑥, 𝑦)
𝑆proba(𝑥, 𝑦) = 𝑥 + 𝑦 − 𝑥𝑦

Supongamos 𝑥 = 2.1
𝜇𝐴1

(2.1) = 0.9
𝜇𝐴2

(2.1) = 0.1

𝑆max = max(𝜇𝐴1
(2.1), 𝜇𝐴2

(2.1))
= max(0.9, 0.1) = 0.9

𝑆proba = 𝜇𝐴1
(2.1) + 𝜇𝐴2

(2.1)
− 𝜇𝐴1

(2.1) ∗ 𝜇𝐴2
(2.1)

= 0.91
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T-conormas comúnmente utilizadas

maximum 𝑀𝐴𝑋(𝑥, 𝑦) = max(𝑥, 𝑦)
Łukasiewicz 𝐿𝑂𝑅(𝑥, 𝑦) = min(𝑥 + 𝑦, 1)
probabilistic 𝑃𝑂𝑅(𝑥, 𝑦) = 𝑥 + 𝑦 − 𝑥𝑦

strong 𝑆𝑇 𝑅𝑂𝑁𝐺(𝑥, 𝑦) = { max(𝑥, 𝑦) si min(𝑥, 𝑦) = 0
1 en otro caso

Hamacher 𝐻𝑂𝑅𝛾(𝑥, 𝑦) = 𝑥+𝑦−(2−𝛾)𝑥𝑦
1−(1−𝛾)𝑥𝑦 , 𝛾 ≥ 0

Yager 𝑌 𝑂𝑅𝑝(𝑥, 𝑦) = min(1, 𝑝
√

𝑥𝑝 + 𝑦𝑝), 𝑝 > 0
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Complemento
Sea 𝐴 un conjunto difuso en 𝑋 → 𝜇𝐴(𝑥) se interpreta como el grado en que 𝑥 pertenece a 𝐴.

Sea 𝑐𝐴 el complemento difuso de 𝐴 de tipo 𝑐.

𝜇𝑐𝐴(𝑥) se interpreta como el grado en que 𝑥 pertenece a 𝑐𝐴 y como el grado en que 𝑥 no

pertenece a 𝐴.

Un complemento difuso 𝑐 tiene la forma 𝑐 ∶ [0, 1] → [0, 1], que asigna un valor 𝑐(𝜇𝐴(𝑥)) a
cada grado de pertenencia 𝜇𝐴(𝑥).

Se deben cumplir (al menos) las siguientes condiciones:

Condiciones de borde 𝑐(0) = 1 y 𝑐(1) = 0
Monotonía 𝑐(𝑥) ≥ 𝑐(𝑦), si 𝑥 ≤ 𝑦 para todo 𝑥, 𝑦 ∈ [0, 1]

Otras dos condiciones deseables son la continuidad y la involución, esto es, 𝑐(𝑐(𝑥)) = 𝑥,
𝑥 ∈ [0, 1].

42



Complemento
Sea 𝐴 un conjunto difuso en 𝑋 → 𝜇𝐴(𝑥) se interpreta como el grado en que 𝑥 pertenece a 𝐴.

Sea 𝑐𝐴 el complemento difuso de 𝐴 de tipo 𝑐.

𝜇𝑐𝐴(𝑥) se interpreta como el grado en que 𝑥 pertenece a 𝑐𝐴 y como el grado en que 𝑥 no

pertenece a 𝐴.

Un complemento difuso 𝑐 tiene la forma 𝑐 ∶ [0, 1] → [0, 1], que asigna un valor 𝑐(𝜇𝐴(𝑥)) a
cada grado de pertenencia 𝜇𝐴(𝑥).

Se deben cumplir (al menos) las siguientes condiciones:

Condiciones de borde 𝑐(0) = 1 y 𝑐(1) = 0
Monotonía 𝑐(𝑥) ≥ 𝑐(𝑦), si 𝑥 ≤ 𝑦 para todo 𝑥, 𝑦 ∈ [0, 1]

Otras dos condiciones deseables son la continuidad y la involución, esto es, 𝑐(𝑐(𝑥)) = 𝑥,
𝑥 ∈ [0, 1].

42



Complemento
Sea 𝐴 un conjunto difuso en 𝑋 → 𝜇𝐴(𝑥) se interpreta como el grado en que 𝑥 pertenece a 𝐴.

Sea 𝑐𝐴 el complemento difuso de 𝐴 de tipo 𝑐.

𝜇𝑐𝐴(𝑥) se interpreta como el grado en que 𝑥 pertenece a 𝑐𝐴 y como el grado en que 𝑥 no

pertenece a 𝐴.

Un complemento difuso 𝑐 tiene la forma 𝑐 ∶ [0, 1] → [0, 1], que asigna un valor 𝑐(𝜇𝐴(𝑥)) a
cada grado de pertenencia 𝜇𝐴(𝑥).

Se deben cumplir (al menos) las siguientes condiciones:

Condiciones de borde 𝑐(0) = 1 y 𝑐(1) = 0
Monotonía 𝑐(𝑥) ≥ 𝑐(𝑦), si 𝑥 ≤ 𝑦 para todo 𝑥, 𝑦 ∈ [0, 1]

Otras dos condiciones deseables son la continuidad y la involución, esto es, 𝑐(𝑐(𝑥)) = 𝑥,
𝑥 ∈ [0, 1].
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Complemento - ejemplo

Determine los complementos difusos de los siguientes conjuntos:

i. 𝐴1 con MF triangular 𝜇𝐴1
(𝑥; 1, 2, 3).

ii. 𝐴2 con MF Gaussiana 𝜇𝐴2
(𝑥; 2, 0.5).

iii. 𝐴3 con MF singleton 𝜇𝐴3
(𝑥; 0.3).
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Complemento - ejemplo
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Relaciones difusas
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Relaciones difusas

Una relación representa la asociación, interacción o interconexión entre

los elementos de dos o más conjuntos.

Una relación difusa definida en los conjuntos 𝑋1, 𝑋2, … , 𝑋𝑛 es un

subconjunto difuso de 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛.

Consideremos el conjunto 𝑋 × 𝑌 = {(𝑥, 𝑦)|𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 }.

Una relación difusa definida en 𝑋 × 𝑌 se representa mediante la función

de pertenencia:

𝜇𝑅 ∶ 𝑋 × 𝑌 → [0, 1]
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Relaciones difusas

Ejemplos de relaciones “lingüísticas” comunes que pueden describirse

mediante relaciones difusas:

“𝑥 es mucho mayor que 𝑦”
“𝑥 está cerca de 𝑦”
“𝑥 e 𝑦 son casi iguales”

“𝑥 e 𝑦 están muy lejos”

47



Considere 𝑥, 𝑦 ∈ {1, 2, 3, 4}, la relación “𝑥 es mucho mayor que 𝑦” se puede representar
mediante:

𝜇𝑅(𝑥, 𝑦) = 𝑥
𝑥 + 𝑦

𝑥/𝑦 1 2 3 4
1 0.5 0.33 0.25 0.20
2 0.67 0.5 0.40 0.33
3 0.75 0.60 0.5 0.43
4 0.80 0.67 0.57 0.5

Esta función asigna valores cercanos a 1 cuando

𝑥 ≫ 𝑦, 0.5 cuando 𝑥 = 𝑦 y cercanos a 0

cuando 𝑥 ≪ 𝑦.

𝜇𝑅(𝑥, 𝑦) = 1
1 + 𝑒−𝛼(𝑥−𝑦−𝛽)

Usando 𝛼 = 2 y 𝛽 = 1:

𝑥/𝑦 1 2 3 4
1 0.12 0.02 0.00 0.00
2 0.50 0.12 0.02 0.00
3 0.88 0.50 0.12 0.02
4 0.98 0.88 0.50 0.12

Note que se puede ajustar cuán abrupta es la

relación modificando los parámetros 𝛼 y 𝛽.
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Operaciones con relaciones difusas

i. Intersección basada en t-normas: Sea 𝑇 una t-norma y sean

𝜇𝑅(𝑥, 𝑦) y 𝜇𝐺(𝑥, 𝑦) dos relaciones difusas binarias en 𝑋 × 𝑌.

La intersección de las relaciones difusas 𝑅 y 𝐺 es:

𝜇𝑅∩𝐺(𝑥, 𝑦) = 𝑇 (𝜇𝑅(𝑥, 𝑦), 𝜇𝐺(𝑥, 𝑦)), (𝑥, 𝑦) ∈ 𝑋 × 𝑌
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Operaciones con relaciones difusas

ii. Unión basada en t-conormas: Sea 𝑆 una t-conorma y sean 𝜇𝑅(𝑥, 𝑦)
y 𝜇𝐺(𝑥, 𝑦) dos relaciones difusas binarias en 𝑋 × 𝑌.

La unión de las relaciones difusas 𝑅 y 𝐺 es:

𝜇𝑅∪𝐺(𝑥, 𝑦) = 𝑆(𝜇𝑅(𝑥, 𝑦), 𝜇𝐺(𝑥, 𝑦)), (𝑥, 𝑦) ∈ 𝑋 × 𝑌
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Operaciones con relaciones difusas

iii. Composición sup-T: Sea 𝑇 una t-norma y sean 𝜇𝑅(𝑥, 𝑦) y 𝜇𝐺(𝑦, 𝑧)
dos relaciones difusas binarias definidas en 𝑋 × 𝑌 y 𝑌 × 𝑍,

respectivamente.

La composición sup-T de 𝑅 y 𝐺, denotada por 𝜇𝑅∘𝐺(𝑦, 𝑧), se define
como:

𝜇𝑅∘𝐺(𝑦, 𝑧) = sup
𝑦∈𝑌

𝑇 (𝜇𝑅(𝑥, 𝑦), 𝜇𝐺(𝑦, 𝑧)), (𝑥, 𝑦) ∈ 𝑋 × 𝑌 ,

(𝑦, 𝑧) ∈ 𝑌 × 𝑍
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Ops con relaciones difusas - ejemplo

𝑅 = “𝑥 es mucho menor que 𝑦”, 𝐺 =“𝑥 es muy cercano a 𝑦”.

𝑅(𝑥, 𝑦) =

⎛⎜⎜⎜
⎝

𝑦1 𝑦2 𝑦3 𝑦4
𝑥1 0.5 0.1 0.1 0.7
𝑥2 0 0.8 0 0
𝑥3 0.9 1 0.7 0.8

⎞⎟⎟⎟
⎠

𝐺(𝑥, 𝑦) =

⎛⎜⎜⎜
⎝

𝑦1 𝑦2 𝑦3 𝑦4
𝑥1 0.4 0 0.9 0.6
𝑥2 0.9 0.4 0.5 0.7
𝑥3 0.3 0 0.8 0.5

⎞⎟⎟⎟
⎠

(𝑅 ∩ 𝐺)(𝑥, 𝑦) =

⎛⎜⎜⎜
⎝

𝑦1 𝑦2 𝑦3 𝑦4
𝑥1
𝑥2
𝑥3

⎞⎟⎟⎟
⎠

(𝑅 ∪ 𝐺)(𝑥, 𝑦) =

⎛⎜⎜⎜
⎝

𝑦1 𝑦2 𝑦3 𝑦4
𝑥1
𝑥2
𝑥3

⎞⎟⎟⎟
⎠
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Ops con relaciones difusas - ejemplo

𝑅 = “𝑥 es mucho menor que 𝑦”, 𝐺 =“𝑥 es muy cercano a 𝑦”.
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𝑥1 0.5 0.1 0.1 0.7
𝑥2 0 0.8 0 0
𝑥3 0.9 1 0.7 0.8
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⎝
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⎠
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⎝

𝑦1 𝑦2 𝑦3 𝑦4
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⎞⎟⎟⎟
⎠

(𝑅 ∪ 𝐺)(𝑥, 𝑦) =

⎛⎜⎜⎜
⎝

𝑦1 𝑦2 𝑦3 𝑦4
𝑥1
𝑥2
𝑥3

⎞⎟⎟⎟
⎠
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Ops con relaciones difusas - ejemplo
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Ops con relaciones difusas - ejemplo

𝑅 = “𝑥 es mucho menor que 𝑦”, 𝐺 =“𝑥 es muy cercano a 𝑦”.

Estas relaciones se pueden definir de la

siguiente manera:

𝜇𝑅(𝑥, 𝑦) = 𝑒−(𝑥−𝑦)2

𝜇𝐺(𝑥, 𝑦) =
⎧{
⎨{⎩

𝑥−𝑦
𝛼 si 𝛼 < 𝑥 − 𝑦 ≤ 0

1 si 𝑥 − 𝑦 ≥ 𝛼
0 en otro caso
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R ′ = "x y es mucho menor que 0"
G ′ = "x y es cercano a 0"
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Ops con relaciones difusas - ejemplo

𝑅 = “𝑥 es mucho menor que 𝑦”, 𝐺 =“𝑥 es muy cercano a 𝑦”.

x0 1 2 3 4 5y
0

1
2

3
4

5

R (x, y)

0.0

0.2

0.4

0.6

0.8

1.0

R

x0 1 2 3 4 5y
0

1
2

3
4

5

G (x, y)

0.0

0.2

0.4

0.6

0.8

1.0

G

54



Ops con relaciones difusas - ejemplo

𝑅 = “𝑥 es mucho menor que 𝑦”, 𝐺 =“𝑥 es muy cercano a 𝑦”.
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Ops con relaciones difusas - ejemplo

𝑅 = “𝑥 es mucho menor que 𝑦”, 𝐺 =“𝑥 es muy cercano a 𝑦”.
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Implicación

Una implicación difusa es una extensión de la implicación clásica 𝑝 → 𝑞.

Es una función de la forma I ∶ [0, 1] × [0, 1] → [0, 1].

Para cualquier valor de verdad posible 𝑎 y 𝑏 de dos proposiciones difusas
𝑝 y 𝑞, respectivamente, otorga el valor de verdad I(𝑎, 𝑏) de la
proposición condicional:

“si 𝑝, entonces 𝑞”.
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Implicación

Consideremos las dos proposiciones difusas 𝑝 = “𝑥 está en 𝐴’ ’ y 𝑞=”𝑦
está en 𝐵“, donde 𝐴 y 𝐵 son conjuntos difusos caracterizados por las

MFs 𝜇𝐴(𝑥) y 𝜇𝐵(𝑦), respectivamente.

La afirmación de implicación 𝑝 → 𝑞 se representa mediante la MF

𝜇𝐴→𝐵(𝑥, 𝑦) = I(𝜇𝐴(𝑥), 𝜇𝐵(𝑦))
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Implicación

S-implicaciones. Surgen del formalismo booleano 𝑝 → 𝑞 ≡ ¬𝑝 ∨ 𝑞
y se definen como

I(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) = 𝑆(𝑁(𝜇𝐴(𝑥)), 𝜇𝐵(𝑦))

𝑆 es una t-conorma y 𝑁 es una negación. Ejemplos: Łukasiewicz y

Kleene-Dienes.

Implicaciones de t-norma. Si 𝑇 es una t-norma, entonces

I(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) = 𝑇 (𝜇𝐴(𝑥), 𝜇𝐵(𝑦))

Ejemplos: Mamdani y Larsen.
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Operadores de implicación

Zadeh I(𝑥, 𝑦) = max(1 − 𝑥,min(𝑥, 𝑦))
Łukasiewicz I(𝑥, 𝑦) = min(1, 1 − 𝑥 + 𝑦)
Mamdani I(𝑥, 𝑦) = min(𝑥, 𝑦)
Larsen I(𝑥, 𝑦) = 𝑥𝑦

standard strict I(𝑥, 𝑦) = { 1 si 𝑥 ≤ 𝑦
0 en otro caso

Gödel I(𝑥, 𝑦) = { 1 si 𝑥 ≤ 𝑦
𝑦 en otro caso

Gaines I(𝑥, 𝑦) = { 1 si 𝑥 ≤ 𝑦
𝑦
𝑥 en otro caso

Kleene-Dienes I(𝑥, 𝑦) = max(1 − 𝑥, 𝑦)
Kleene-Dienes-Łukasiewicz I(𝑥, 𝑦) = 1 − 𝑥 + 𝑥𝑦
Yager I(𝑥, 𝑦) = 𝑦𝑥
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Variables lingüísticas y razonamiento
aproximado
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Variables lingüísticas

Matemática → variables toman valores numéricos.

Lógica difusa → variables toman valores en un lenguaje natural o

artificial (Zadeh, 75).

Por ejemplo, ”edad” es una variable lingüística si sus valores son

lingüísticos. Ejemplo:

edad ∈ {joven, no joven, muy joven, bastante joven, viejo, no muy viejo y no muy joven, etc. }

Estos valores son llamados términos lingüísticos o etiquetas

lingüísticas.
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Variables lingüísticas - ejemplo
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Variable lingüística "estatura"

Muy bajo: MB(x; 149, 150, 170)
Bajo: B(x; 150, 170, 180)

Medio: M(x; 170, 180, 190)
Alto: A(x; 180, 190, 200)

Muy alto: MA(x; 190, 210, 211)
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Variables lingüísticas

Las variables lingüísticas proporcionan un medio de caracterización

aproximada de fenómenos que son difíciles de describir en términos

precisos.

Es la base para el razonamiento aproximado (Zadeh, 1979).

Principales aplicaciones del enfoque lingüístico se encuentran en el

ámbito de los sistemas humanísticos.

Inteligencia artificial, procesos de toma de decisiones, reconocimiento de patrones, psicología,

derecho, diagnóstico médico, recuperación de información, economía.
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Razonamiento aproximado

La regla de inferencia más importante es elmodus ponens generalizado

(GMP).

Esta regla de inferencia deriva de su contraparte clásica:

premisa Si 𝑝 entonces 𝑞
hecho 𝑝
consecuencia 𝑞

Dada la regla 𝑝 → 𝑞:
Si 𝑝 es verdadero, entonces 𝑞 es verdadero.

Si ¬𝑞 es verdadero, entonces se tiene ¬𝑝.
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Modus ponens generalizado

Modus ponens generalizado → se basa en la regla de inferencia

composicional de Zadeh.

premisa Si 𝑥 es 𝐴 entonces 𝑦 es 𝐵
hecho 𝑥 es 𝐴′

consecuencia 𝑦 es 𝐵′

𝐴, 𝐴′ son conjuntos difusos definidos en el mismo universo, pero no

necesariamente son iguales. Lo mismo ocurre para 𝐵 y 𝐵′.

“Si 𝑥 es 𝐴 entonces 𝑦 es 𝐵” y si ocurre el hecho 𝐴′ (similar a 𝐴), se

espera un evento 𝐵′ (también similar a 𝐵).
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premisa Si 𝑥 es 𝐴 entonces 𝑦 es 𝐵
hecho 𝑥 es 𝐴′

consecuencia 𝑦 es 𝐵′

¿Cómo calcular 𝐵′?

Combinando el hecho y la relación difusa resultante de la implicación. Esto

es:

𝐵′ = 𝐴′ ∘ (𝐴 → 𝐵)
La MF de 𝐵′ resultante es:

𝜇𝐵′(𝑦) = sup
𝑥∈𝑋

𝑇 {𝜇𝐴′(𝑥), 𝜇𝐴→𝐵(𝑥, 𝑦)}, 𝑦 ∈ 𝑌 ,

donde:

𝑇 es una t-norma.

𝜇𝐴→𝐵(𝑥, 𝑦) resulta de evaluar algún operador de implicación en las MFs de 𝐴 y 𝐵, esto

es, 𝜇𝐴(𝑥) y 𝜇𝐵(𝑦), respectivamente.

𝜇𝐴′(𝑥) es la MF del conjunto 𝐴′.

Se puede verificar que elmodus ponens generalizado es equivalente almodus ponens clásico

cuando 𝐴′ = 𝐴 y 𝐵′ = 𝐵.
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Razonamiento aproximado
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Razonamiento aproximado

Los sistemas prácticos poseen varias reglas si-entonces y la parte

antecedente es una conjunción o disyunción de proposiciones difusas.

Por ejemplo, “𝑥 es 𝐴 y 𝑦 es 𝐵” “𝑥 es 𝐴 o 𝑦 es 𝐵”

Se evalúa la parte antecedente con t-normas o t-conormas según

corresponda y se genera la relación de implicación para cada regla.

Las reglas son agregadas de dos posibles formas equivalentes:

(a) Las relaciones difusas (reglas) se agregan primero y luego se aplica la regla de

inferencia composicional.

(b) La regla de inferencia composicional se evalúa en cada regla y luego los conjuntos

difusos resultantes se agregan.
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Los sistemas prácticos poseen varias reglas si-entonces y la parte

antecedente es una conjunción o disyunción de proposiciones difusas.
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Razonamiento aproximado

Considere la base de reglas:

R1 Si 𝑥 es 𝐴1 entonces 𝑦 es 𝐶1

R2 Si 𝑥 es 𝐴2 entonces 𝑦 es 𝐶2
⋮ ⋮
R𝑛 Si 𝑥 es 𝐴𝑛 entonces 𝑦 es 𝐶𝑛
Hecho: 𝑥 es 𝐴
Consecuencia: 𝑦 es 𝐶

𝑥 ∈ 𝑋 e 𝑦 ∈ 𝑌 son variables lingüísticas.

T (𝑥) = {𝐴1, … , 𝐴𝑛} y T (𝑦) = {𝐶1, … , 𝐶𝑛} son los términos

lingüísticos de 𝑥 y 𝑦, respectivamente.
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Razonamiento aproximado

Se busca encontrar la función de membresía de la consecuencia 𝐶 a

partir de la base de reglas {R1, … ,R𝑛} y el hecho 𝐴.

La relación difusa (implicación) que representa la 𝑖-ésima regla difusa

si-entonces es:

𝑅𝑖(𝑥, 𝑦) = I(𝜇𝐴𝑖
(𝑥), 𝜇𝐶𝑖

(𝑦))
I(⋅) es un operador de implicación.

Luego, se aplica la regla de inferencia composicional para obtener el

conjunto difuso resultante de cada una de las reglas difusas si-entonces

del modelo.
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Razonamiento aproximado

La función de membresía del conjunto difuso resultante a partir de la

𝑖-ésima regla, cuando se presenta el hecho 𝐴, es:

𝜇𝐶𝑖
(𝑦) = 𝜇𝐴∘𝑅𝑖

(𝑦) = sup
𝑥∈𝑋

𝑇 (𝜇𝐴(𝑥), 𝑅𝑖(𝑥, 𝑦)), 𝑦 ∈ 𝑌 ,

donde 𝑇 es una t-norma e 𝑖 = 1, … , 𝑛.

Luego, se aplica una operación de agregación para calcular el conjunto

difuso de salida general.
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Razonamiento aproximado

Esta agregación se realiza utilizando un conectivo que puede ser una

operación de tipo “y” (t-norma) o de “o” (t-conorma),

𝜇𝐶(𝑦) = Agg(𝜇𝐶1
(𝑦), … , 𝜇𝐶𝑛

(𝑦)), 𝑦 ∈ 𝑌

Agg es el operador de agregación - asumiremos una t-conorma 𝑆.
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El modelo Mamdani
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El modelo Mamdani

También conocido como modelo difuso lingüístico → las entradas y

salidas son variables lingüísticas.

Sean 𝑥1 ∈ 𝑋1, … , 𝑥𝑑 ∈ 𝑋𝑑 las variables lingüísticas de entrada.

Sea 𝑦 ∈ 𝑌 ⊆ ℝ una variable lingüística de salida.

Términos lingüísticos:

T (𝑥1) = {𝐴(1)
1 , … , 𝐴(𝑛)

1 }, …,

T (𝑥𝑑) = {𝐴(1)
𝑑 , … , 𝐴(𝑛)

𝑑 },
T (𝑦) = {𝐵1, … , 𝐵𝑛}.

𝜇(𝑖)
𝑗 (𝑥𝑗) es la función de

membresía de 𝐴(𝑖)
𝑗 .
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Considere la base de reglas:

R1 Si 𝑥1 es 𝐴(1)
1 y … y 𝑥𝑑 es 𝐴(1)

𝑑 entonces 𝑦 es 𝐵1
⋮ ⋮
R𝑖 Si 𝑥1 es 𝐴(𝑖)

1 y … y 𝑥𝑑 es 𝐴(𝑖)
𝑑 entonces 𝑦 es 𝐵𝑖

⋮ ⋮
R𝑛 Si 𝑥1 es 𝐴(𝑛)

1 y … y 𝑥𝑑 es 𝐴(𝑛)
𝑑 entonces 𝑦 es 𝐵𝑛

hecho: 𝑥1 es ̄𝑥1 y … y 𝑥𝑑 es ̄𝑥𝑑
consecuencia: ̂𝑦 es 𝐵

̄𝑥𝑗, (𝑗 = 1, … , 𝑑), es un conjunto difuso que actúa como una interfaz nítido → difuso.

Convierte un valor nítido/numérico de 𝑥1 en un valor difuso mediante la función de

pertenencia 𝜇𝑥̄𝑗
(𝑥𝑗).

̂𝑦 es el valor inferido a partir de los valores de 𝑥1, … , 𝑥𝑑, denotados por 𝑥′
1, … , 𝑥′

𝑑, se
realiza mediante el GMP.
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Considere la base de reglas:
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hecho: 𝑥1 es ̄𝑥1 y … y 𝑥𝑑 es ̄𝑥𝑑

consecuencia: ̂𝑦 es 𝐵

̄𝑥𝑗, (𝑗 = 1, … , 𝑑), es un conjunto difuso que actúa como una interfaz nítido → difuso.

Convierte un valor nítido/numérico de 𝑥1 en un valor difuso mediante la función de

pertenencia 𝜇𝑥̄𝑗
(𝑥𝑗).

̂𝑦 es el valor inferido a partir de los valores de 𝑥1, … , 𝑥𝑑, denotados por 𝑥′
1, … , 𝑥′

𝑑, se
realiza mediante el GMP.
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Usando el GMP podemos inferir 𝐵 a partir de la base de reglas disponible

y el hecho.

El valor final ̂𝑦 se calculará aplicando un método de desfusificación

(conjunto difuso a un valor nítido).

𝑅𝑖(𝑥1, … , 𝑥𝑑, 𝑦) = I
⎛⎜⎜
⎝

min
𝑗∈1,…,𝑑

(𝜇𝐴(𝑖)
𝑗

(𝑥𝑗))⏟⏟⏟⏟⏟⏟⏟
t-norma

, 𝜇𝐵𝑖
(𝑦)⎞⎟⎟

⎠

donde el operador I(⋅) es la implicación.
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Para aplicar la regla de inferencia composicional, el hecho “𝑥1 es ̄𝑥1 y …
y 𝑥𝑑 es ̄𝑥𝑑” debe ser representado por la t-norma.

Esto requiere que se conozcan las funciones de membresía de los

conjuntos difusos ̄𝑥1, … , ̄𝑥𝑑.

Comúnmente, se utilizan conjuntos difusos singleton para este propósito,

es decir, 𝜇 ̄𝑥𝑗
(𝑥𝑗) = 1 solo cuando 𝑥𝑗 = 𝑥′

𝑗 y 0 en caso contrario.

Para los valores de entrada 𝑥1 = 𝑥′
1, … , 𝑥𝑑 = 𝑥′

𝑑, el conjunto difuso

resultante de la combinación del hecho y la regla 𝑖-ésima es:

𝜇𝐵′
𝑖
(𝑦) = sup

x∈X
T {

𝑑
T

𝑗=1
(𝜇 ̄𝑥𝑗

(𝑥′
𝑗)), 𝑅𝑖(x, 𝑦)} , 𝑦 ∈ 𝑌 ,

donde T(⋅) es una t-norma, x = (𝑥1, … , 𝑥𝑑) yX = 𝑋1×… ×𝑋𝑑.
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𝜇𝐵′
𝑖
(𝑦) = sup

x∈X
T {

𝑑
T

𝑗=1
(𝜇 ̄𝑥𝑗

(𝑥′
𝑗)), 𝑅𝑖(x, 𝑦)} , 𝑦 ∈ 𝑌 ,

Teniendo en cuenta T(𝑎, 1) = 𝑎 y 𝜇𝑥̄𝑗
(𝑥𝑗), 𝑗 = 1, … , 𝑑, son conjuntos difusos

singleton, tenemos:

𝜇𝐵′
𝑖
(𝑦) = 𝑅𝑖(x′, 𝑦),

𝑦 ∈ 𝑌 , x′ ∈ X
0
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Grado de pertenencia

El conjunto difuso resultante del modelo es:

𝜇𝐵(𝑦) = Agg(𝜇𝐵′
1
(𝑦), … , 𝜇𝐵′

𝑛
(𝑦)), 𝑦 ∈ 𝑌 ,

Agg es el operador de agregación (t-conorma 𝑆).
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Para resumir, el conjunto difuso 𝐵 se calcula:

(i) Calcular la relación difusa de cada regla.

Primero, se calcula la t-norma de las premisas (nivel de activación de la regla 𝑖).

Si se utiliza el operadormin como t-norma, el nivel de activación de la 𝑖-ésima regla es:

𝛼𝑖 = min(𝜇(𝑖)
1 (𝑥′

1), … , 𝜇(𝑖)
𝑑 (𝑥′

𝑑)).

(ii) Se evalúa el operador de implicación y se calcula el conjunto difuso de salida de la 𝑖-ésima

regla:

𝜇𝐵′
𝑖
(𝑦) = I(𝛼𝑖, 𝜇𝐵𝑖

(𝑦)), ∀𝑦 ∈ 𝑌

I(⋅) es el operador de implicación (min).

83



Para resumir, el conjunto difuso 𝐵 se calcula:

(i) Calcular la relación difusa de cada regla.

Primero, se calcula la t-norma de las premisas (nivel de activación de la regla 𝑖).

Si se utiliza el operadormin como t-norma, el nivel de activación de la 𝑖-ésima regla es:

𝛼𝑖 = min(𝜇(𝑖)
1 (𝑥′

1), … , 𝜇(𝑖)
𝑑 (𝑥′

𝑑)).

(ii) Se evalúa el operador de implicación y se calcula el conjunto difuso de salida de la 𝑖-ésima

regla:

𝜇𝐵′
𝑖
(𝑦) = I(𝛼𝑖, 𝜇𝐵𝑖

(𝑦)), ∀𝑦 ∈ 𝑌

I(⋅) es el operador de implicación (min).

83



Para resumir, el conjunto difuso 𝐵 se calcula:

(i) Calcular la relación difusa de cada regla.

Primero, se calcula la t-norma de las premisas (nivel de activación de la regla 𝑖).

Si se utiliza el operadormin como t-norma, el nivel de activación de la 𝑖-ésima regla es:

𝛼𝑖 = min(𝜇(𝑖)
1 (𝑥′

1), … , 𝜇(𝑖)
𝑑 (𝑥′

𝑑)).

(ii) Se evalúa el operador de implicación y se calcula el conjunto difuso de salida de la 𝑖-ésima

regla:

𝜇𝐵′
𝑖
(𝑦) = I(𝛼𝑖, 𝜇𝐵𝑖

(𝑦)), ∀𝑦 ∈ 𝑌

I(⋅) es el operador de implicación (min).

83



Para resumir, el conjunto difuso 𝐵 se calcula:

(i) Calcular la relación difusa de cada regla.

Primero, se calcula la t-norma de las premisas (nivel de activación de la regla 𝑖).

Si se utiliza el operadormin como t-norma, el nivel de activación de la 𝑖-ésima regla es:

𝛼𝑖 = min(𝜇(𝑖)
1 (𝑥′

1), … , 𝜇(𝑖)
𝑑 (𝑥′

𝑑)).

(ii) Se evalúa el operador de implicación y se calcula el conjunto difuso de salida de la 𝑖-ésima

regla:

𝜇𝐵′
𝑖
(𝑦) = I(𝛼𝑖, 𝜇𝐵𝑖

(𝑦)), ∀𝑦 ∈ 𝑌

I(⋅) es el operador de implicación (min).

83



(iii) Calcular el conjunto difuso resultante 𝐵 agregando los conjuntos

difusos obtenidos para cada regla en el paso anterior.

(iv) Calcular el valor de ̂𝑦 mediante cualquier método de des-fusificación.

Por ejemplo, si se aplica el método habitual de

Centro-de-Área/Gravedad, el valor inferido es:

̂𝑦 =
∫
𝑌

𝑦𝜇𝐵(𝑦)𝑑𝑦
∫
𝑌

𝜇𝐵(𝑦)𝑑𝑦
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El modelo Takagi-Sugeno-Kang (TSK)
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El modelo Takagi-Sugeno-Kang (TSK)

El modelo TSK es una combinación de un modelo lógico y matemático.

Se usa la filosofía “dividir y conquistar”.

El antecedente de las reglas borrosas divide el espacio de entrada en

varias regiones locales difusas, mientras que los consecuentes describen

el comportamiento dentro de una región dada.
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La base de reglas de un modelo TSK se puede expresar como:

R1 Si 𝑥1 es 𝐴(1)
1 y … y 𝑥𝑑 es 𝐴(1)

𝑑 entonces

𝑓1(x, Θ(1)) = 𝜃(1)
0 + 𝜃(1)

1 𝑥1 + ⋯ + 𝜃(1)
𝑑 𝑥𝑑 = Θ′

1x

⋮ ⋮
R𝑖 Si 𝑥1 es 𝐴(𝑖)

1 y … y 𝑥𝑑 es 𝐴(𝑖)
𝑑 entonces

𝑓𝑖(x, Θ(𝑖)) = 𝜃(𝑖)
0 + 𝜃(𝑖)

1 𝑥1 + ⋯ + 𝜃(𝑖)
𝑑 𝑥𝑑 = Θ′

𝑖x
⋮ ⋮
R𝑛 Si 𝑥1 es 𝐴(𝑛)

1 y … y 𝑥𝑑 es 𝐴(𝑛)
𝑑 entonces

𝑓𝑛(x, Θ(𝑛)) = 𝜃(𝑛)
0 + 𝜃(𝑛)

1 𝑥1 + ⋯ + 𝜃(𝑛)
𝑑 𝑥𝑑 = Θ′

𝑛x
hecho: 𝑥1 = 𝑥′

1 y … y 𝑥𝑑 = 𝑥′
𝑑

consecuencia: ̂𝑦

(𝑥′
1, … , 𝑥′

𝑑) es una realización del vector de entrada (𝑥1, … , 𝑥𝑑).

Estos valores se evalúan en las proposiciones del antecedente “𝑥1 es 𝐴(𝑖)
1 ”, …, “𝑥𝑑 es

𝐴(𝑖)
𝑑 ” de cada regla, esto es, 𝜇(𝑖)

1 (𝑥′
1), … , 𝜇(𝑖)

𝑑 (𝑥′
𝑑).
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Luego, los valores 𝜇(𝑖)
1 (𝑥′

1), … , 𝜇(𝑖)
𝑑 (𝑥′

𝑑) se combinan utilizando una t-norma (conectivo ”y”) del

antecedente de la regla.

El resultado de esta operación es el nivel de activación de la regla 𝑖-ésima y se calcula mediante:

𝑤𝑖 =
𝑑
T

𝑗=1
(𝜇(𝑖)

𝑗 (𝑥′
𝑗)).

La salida de cada regla se evalúa con la función lineal del consecuente:

𝑓𝑖(x, Θ(𝑖)) = 𝜃(𝑖)
0 + 𝜃(𝑖)

1 𝑥′
1 + ⋯ + 𝜃(𝑖)

𝑑 𝑥′
𝑑,

Θ(𝑖) = (𝜃(𝑖)
0 , 𝜃(𝑖)

1 , … , 𝜃(𝑖)
𝑑 ) es el conjunto de parámetros del consecuente de la regla 𝑖-ésima.

Finalmente, la salida de cada regla (activada) se agrega de la forma:

̂𝑦 =
∑𝑛

𝑖=1 𝑤𝑖𝑓𝑖

∑𝑛
𝑖=1 𝑤𝑖

=
𝑛

∑
𝑖=1

𝑤̄𝑖𝑓𝑖,

𝑤̄𝑖 se denomina nivel de activación normalizado de la regla 𝑖-ésima.
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∑𝑛
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Partición del espacio de entrada

Tres formas típicas:
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Entrenamiento

a. ¿Cómo encontrar el conjunto de parámetros del modelo, es decir, los

parámetros de las funciones de membresía y los parámetros del

consecuente de los modelos TSK?

b. ¿Cómo elegir las variables lingüísticas adecuadas?

c. ¿Cómo encontrar la estructura del modelo difuso? (la estructura de la

base de reglas).
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a. Conocimiento experto y estrategias basadas en datos.

b. Cuando algún aspecto de un modelo difuso se optimiza o se aprende

a partir de los datos, se utiliza comúnmente el términomodelo

neuro-difuso.

c. Jyh-Shing R. Jang (1993) propuso uno de los modelos neuro-difusos

pioneros, el modelo ANFIS (Adaptive Network-based Fuzzy Inference

System).
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ANFIS contempla un procedimiento de aprendizaje híbrido:

a. Mínimos cuadrados ordinarios (OLS) para estimar los parámetros del

consecuente.

b. Aprendizaje basado en descenso de gradiente para determinar los

parámetros del antecedente.

c. Soluciones alternativas:

Optimización no lineal sin gradiente, como los Algoritmos Genéticos.

Clustering difuso (o no) en el espacio producto de las entradas y

salidas.
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Descenso de gradiente

Estrategia de aprendizaje para estimar los parámetros del modelo o

refinar una estimación obtenida por otros métodos (e.g., clustering).

Decisiones de diseño: especificar una forma para las MFs del

antecedente (Gaussiana), operador t-norma (producto).

Conjunto de datos de entrenamiento:

𝑇 = {(x𝑘, 𝑦𝑘)|x𝑘 ∈ ℝ𝑑, 𝑦𝑘 ∈ ℝ, 𝑘 = 1, … , 𝑁}

donde x𝑘 = 𝑥𝑘1, … , 𝑥𝑘𝑗, … , 𝑥𝑘𝑑.
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𝐴(𝑖)
𝑗 está data por:

𝜇(𝑖)
𝑗 (𝑥𝑗) = exp(−

(𝑥𝑗 − 𝜈(𝑖)
𝑗 )2

(𝜎(𝑖)
𝑗 )2

)

donde 𝜈(𝑖)
𝑗 y 𝜎(𝑖)

𝑗 son parámetros de ubicación y escala, respectivamente.

Se busca minimizar la función de error cuadrático:

𝐸 = 1
2

𝑁
∑
𝑘=1

(𝑦𝑘 − ̂𝑦𝑘)2 =
𝑁

∑
𝑘=1

1
2

𝐸𝑘

̂𝑦𝑘 es la salida del modelo.
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𝐸 = 1
2

𝑁
∑
𝑘=1

(𝑦𝑘 − ̂𝑦𝑘)2 =
𝑁

∑
𝑘=1

1
2

𝐸𝑘

̂𝑦𝑘 es la salida del modelo.

Para el parámetro de ubicación en la iteración ℓ:

𝜈(𝑖)
𝑗 (ℓ) = 𝜈(𝑖)

𝑗 (ℓ − 1) + Δ𝜈(𝑖)
𝑗

donde

Δ𝜈(𝑖)
𝑗 = −𝜂 𝜕𝐸

𝜕𝜈(𝑖)
𝑗

= −𝜂
𝑁

∑
𝑘=1

1
2

𝜕𝐸𝑘

𝜕𝜈(𝑖)
𝑗

𝜂 es un parámetro conocido como tasa de aprendizaje.
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El gradiente 𝜕𝐸
𝜕𝜈(𝑖)

𝑗
es:

𝜕𝐸
𝜕𝜈(𝑖)

𝑗

= 1
2

𝑁
∑
𝑘=1

(𝑦𝑘 − ̂𝑦𝑘) (− 𝜕 ̂𝑦𝑘

𝜕𝜈(𝑖)
𝑗

)

̂𝑦𝑘 = ∑𝑛
𝑖=1 𝑤̄𝑖𝑘𝑓𝑖𝑘 es la salida del modelo para la entrada x𝑘.

𝑤̄𝑖𝑘 es el nivel de activación normalizado de la regla 𝑖.

𝑓𝑖𝑘 es la salida de la salida de la regla 𝑖.
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Los parámetros de las premisas, 𝜈(𝑖)
𝑗 y 𝜎(𝑖)

𝑗 , se estiman de manera

iterativa utilizando las siguientes reglas de actualización:

𝜈(𝑖)
𝑗 (𝑙) = 𝜈(𝑖)

𝑗 (𝑙 − 1) +
𝑁

∑
𝑘=1

4𝜂 1
(𝜎(𝑖)

𝑗 (𝑙 − 1))2
(𝑥𝑘𝑗 − 𝜈(𝑖)

𝑗 (𝑙 − 1))𝑤̄𝑖𝑘(𝑓𝑖𝑘 − ̂𝑦𝑘)(𝑦𝑘 − ̂𝑦𝑘)

𝜎(𝑖)
𝑗 (𝑙) = 𝜎(𝑖)

𝑗 (𝑙 − 1) +
𝑁

∑
𝑘=1

4𝜂 1
(𝜎(𝑖)

𝑗 (𝑙 − 1))3
(𝑥𝑘𝑗 − 𝜈(𝑖)

𝑗 (𝑙 − 1))2𝑤̄𝑖𝑘(𝑓𝑖𝑘 − ̂𝑦𝑘)(𝑦𝑘 − ̂𝑦𝑘)
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Estimación de parámetros del consecuente
Se puede plantear este problema usando mínimos cuadrados.

Se estiman por separado para cada regla:

min
Θ𝑖

1
𝑁

(y − x𝑒Θ(𝑖))𝑡Φ𝑖(y − x𝑒Θ(𝑖))

x𝑒 = [x; 𝟏] es la matriz de regresores extendida.

Φ𝑖 es una matriz de la forma:

Φ𝑖 =
⎡
⎢⎢
⎣

𝑤̄1𝑖 0 … 0
0 𝑤̄2𝑖 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑤̄𝑁𝑖

⎤
⎥⎥
⎦

Θ(𝑖) = (x𝑡
𝑒Φ𝑖x𝑒)−1x𝑡

𝑒Φ𝑖y, para 𝑖 = 1, … , 𝑛.
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