Convolutional Neural Networks (CNN)
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Many other applications

Speech recognition & speech synthesis
Natural Language Processing
Protein/DNA binding prediction

Any problem with a spatial (or sequential) structure



ConvNets for image classification

CNN = Convolutional Neural Networks = ConvNet

C3: f. maps 16@10x10
C1: feature maps S4: . maps 16@5x5

INPUT 6@28x28

32x32

S2: f. maps
6@14x14

\
‘ Full conAedion ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document
recognition.



Outline

Convolutions
CNNs for Image Classification

CNN Architectures



Convolutions



Motivations: Standard Dense Layer for an image
input

x = Input((640, 480, 3), dtype='float32")

# shape of x is: (None, 640, 480, 3)

x = Flatten()(x)

# shape of x i1s: (None, 640 x 480 x 3)

z = Dense(1000)(x)

How many parameters in the Dense layer?

640 x 480 x 3 x 1000 + 1000 = 9220 1!

Spatial organization of the input is destroyed by Flatten

We never use Dense layers directly on large images. Most standard solution is convolution layers



Fully Connected Network: MLP

input_1image = Input(shape=(28, 28, 1))

x = Flatten()(input_image)

x = Dense(256, activation='relu')(x)
x = Dense(10, activation='softmax')(x)

mlp = Model(inputs=input_1image, outputs=x)

Convolutional Network

input_image = Input(shape=(28, 28, 1))

*x = Conv2D(32, 5, activation='relu')(input_1image)
*x = MaxPool2D(2, strides=2)(x)

*x = Conv2D(64, 3, activation='relu')(x)

*x = MaxPool2D(2, strides=2)(x)

x = Flatten()(x)

x = Dense(256, activation='relu')(x)

x = Dense(10, activation='softmax')(x)

convnet = Model(inputs=input_image, outputs=x)

2D spatial organization of features preserved untill ‘Flatten’.



Convolution in a neural network

e risa3 X 3 chunk (dark area) of the image (blue array)
e Each output neuron is parametrized with the 3 X 3 weight matrix w (small
numbers)

https://github.com/vdumoulin/conv_arithmetic



Convolution in a neural network

e risa3d X 3chunk
(dark area) of the
image (blue array)

e Each output neuron
is parametrized with
the 3 x 3 weight
matrix w (small
numbers)

The activation obtained
by slidingthe 3 x 3
window and computing:

2(x) = relu(wlz +b)
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Motivations

Local connectivity
e Aneuron depends only on a few local input neurons
e Translation invariance

Comparison to Fully connected

e Parameter sharing: reduce overfitting
e Make use of spatial structure: strong prior for vision!

Animal Vision Analogy
Hubel & Wiesel, RECEPTIVE FIELDS OF SINGLE NEURONS IN THE CAT'S STRIATE CORTEX (1959)



Why Convolution

Discrete convolution (actually cross-correlation) between two functions fand g:

(fxg)(x Zf Zf g(x +a)

a+b=x

2D-convolutions (actually 2D cross-correlation):

(fxg)(x,y) Zanm (x+n,y+m)

fis a convolution kernel or filter applied to the 2-d map ¢ (our image).



Example: convolution image

e Image: ©m of dimensions 5 X 5
e Kernel: k of dimensions 3 x 3

2 2
(kr*z'm)(x,y):Zan m)im(z+n—1,y+m—1)

n=0 m=0
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Channels

Colored image = tensor of shape (height, width, channels)

Convolutions are usually computed for each channel and summed:

28x28x3
24x24
¢

5x5x3

if

2
(k% imeeor) = 3 ke % ime
c=0



Multiple convolutions
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Multiple convolutions
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28x28x3
24x24x4

5x5x3x4
IIII’

e Kernel size aka receptive field (usually 1, 3, 5,7, 11)
e Output dimension: length - kernel_size + 1



Strides

e Strides: increment step size for the convolution operator
e Reduces the size of the output map

Example with kernel size 3 x 3 and a stride of 2 (image in blue)
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Padding

Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters
Useful with strides and large receptive fields

Usually: fill with 0s
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Dealing with shapes

Kernel or Filter shape (F', F,C*, C°):
o I’ X Fkernelsize
5X5X3X4 e C"input channels
e C° output channels
Number of parameters:

(FXFxC'+1)xC°
Activations or Feature maps shape:

e Input (W, H*, C")
e Output (W° H° C°)

We=(W'—F+2P)/S+1
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e Spatial dimension reduction

e Localinvariance

Pooling

e No parameters: max or average of 2x2 units

1

1

max pool with 2x2 filters
and stride 2

5
3

1

6
2
2

4
8
0
4

http://cs231n.github.io/convolutional-networks
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Pooling

e Spatial dimension reduction
e Localinvariance
e No parameters: max or average of 2x2 units

28x28x3

14x14x3

no parameters!
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Architectures
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Classic ConvNet Architecture

Input

Conv blocks
Convolution + activation (relu)
Convolution + activation (relu)

Maxpooling 2x2

Output

e Fully connected layers
e Softmax



AlexNet
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pooling pooling

Simplified version of Krizhevsky, Alex, Sutskever, and Hinton. “Imagenet classification with deep convolutional neural networks.”
NIPS 2012

Input: 227x227x3 image

First conv layer: kernel 11x11x3x96 stride 4
Kernel shape: (11,11,3,96)

Output shape: (55,55,96)

Number of parameters: 34,944

Equivalent MLP parameters: 43.7 x 1e9



AlexNet

Max pooling
pooling

INPUT: [227x227x3]

CONV1: [55x55x96] 96 11x11 filters at stride 4, pad 0
MAX POOL1: [27x27x96] 3x3  filters at stride 2

CONV2: [27x27x256] 256 5x5 filters at stride 1, pad 2
MAX POOL2: [13x13x256] 3x3  filters at stride 2

CONV3: [13x13x384] 384 3x3  filters at stride 1, pad 1
CONV4: [13x13x384] 384 3x3  filters at stride 1, pad 1
CONV5: [13x13x256] 256 3x3  filters at stride 1, pad 1
MAX POOL3: [6x6x256] 3x3  filters at stride 2

FC6: [4096] 4096 neurons

FC7: [4096] 4096 neurons

FC8: [1000] 1000 neurons (softmax logits)



Hierarchical representation

Low-Level Mid-Level| |High-Level| Trainable
— — > |
Feature Feature Feature Classifier
|

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

26
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VGG-16

224x224x3 224 x224x64

@ convolution+ReLU
@ max pooling
@ fully connected+ReLU

@ softmax

Simonyan, Karen, and Zisserman. “Very deep convolutional networks for large-scale image recognition.”
(2014)
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model

model.
model.

model.

model
model

model.
model.
model.
model.

model

model.
model.
model.

VGG in Keras

.add(Convolution2D(64, 3, 3, activation='relu',

input_shape=(3,224,224)))
add(Convolution2D(64, 3, 3, activation='relu'))
add(MaxPooling2D((2,2), strides=(2,2)))

add(Convolution2D(128, 3, 3, activation='relu'))

.add(Convolution2D(128, 3, 3, activation='relu'))
.add(MaxPooling2D((2,2), strides=(2,2)))

add(Convolution2D(256, 3, 3, activation='relu'))
add(Convolution2D(256, 3, 3, activation='relu'))
add(Convolution2D(256, 3, 3, activation='relu'))
add(MaxPooling2D((2,2), strides=(2,2)))

.add(Convolution2D(512, 3, 3, activation='relu'))

add(Convolution2D(512, 3, 3, activation='relu'))
add(Convolution2D(512, 3, 3, activation='relu'))
add(MaxPooling2D((2,2), strides=(2,2)))

model

model.
model.
model.

model.

model
model

model.
model.
model.

.add(Convolution2D(512, 3, 3, activation='relu'))

add(Convolution2D(512, 3, 3, activation='relu'))
add(Convolution2D(512, 3, 3, activation='relu'))

add(MaxPooling2D((2,2), strides=(2,2)))
add(Flatten())
.add(Dense (4096, activation='relu'))

.add(Dropout(0.5))

add(Dense(4096, activation='relu'))
add(Dropout(0.5))
add(Dense(1000, activation='softmax'))



Memory and Parameters

INPUT:
CONV3-64:
CONV3-64:
POOL2:

CONV3-128:
CONV3-128:

POOL2:

CONV3-256:
CONV3-256:
CONV3-256:

POOL2:

CONV3-512:
CONV3-512:
CONV3-512:

POOL2:

CONV3-512:
CONV3-512:
CONV3-512:

POOL2:
FC:
[FC8

29 FC:

Activation maps

[224x224x3]
[224x224x64]
[224x224x64]
[112x112x64]
[112x112x128]
[112x112x128]
[56x56x128]
[56x56x256]
[56x56x256]
[56x56x256]
[28x28x256]
[28x28x512]
[28x28x512]
[28x28x512]
[14x14x512]
[14x14x512]
[14x14x512]
[14x14x512]
[7x7x512]
[1x1x4096]
[1x1x4096]
[1x1x1000]

150K
3.2M
3.2M
800K
1.6M
1.6M
400K

= 800K
= 800K

800K
200K
400K
400K
400K

= 100K
= 100K

100K
100K

25K
4096
4096
1000

Parameters

0

(3x3x3)x64
(3x3x64)x64

0
(3x3x64)x128
(3x3x128)x128
0
(3x3x128)x256
(3x3x256)x256
(3x3x256)x256
0
(3x3x256)x512
(3x3x512)x512
(3x3x512)x512
0
(3x3x512)x512
(3x3x512)x512
(3x3x512)x512
0
7x7x512x4096
4096x4096
4096x1000

1,728
36,864

73,728
147,456

294,912
589,824
589,824

1,179,648
2,359,296
2,359,296

2,359,296
2/,359,296
2,359,296

102,760,448
16,777,216
4,096,000

*)
*)

TOTAL activations:
24M x 4 bytes
~= 93MB / image
(x2 for backward)
TOTAL parameters:
138M x 4 bytes
~= 552MB
(x2 for plain SGD, x4 for Adam)
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ResNet

He, Kaiming, et al. “Deep residual learning for image recognition.” CVPR. 2016.

e Even deeper models: 34, 50, 101, 152 layers
e Ablock learns the residual w.r.t. identity

weight layer

x
identity

Figure 2. Residual learning: a building block.

® Good optimization properties
ResNet50 Compared to VGG:

e Superior accuracy in all vision tasks 5.25% top-5 error vs
7.1%

® Less parameters 25Mvs 138M

e Computational complexity 3.8B Flops vs 15.3B Flops

e Fully Convolutional until the last layer

VGG-19

xxxxxx

i

34-layer plain

34-layer residual

i

i
5

L

=l
g
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Deeper is better

ImageNet experiments

22 Iayers 19 Iayers

357 I

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

from Kaiming He slides “Deep residual learning for image recognition.” ICML. 2016.
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State of the art

e Finding right architectures: Active area or research

Relu activation

+
Filter concat

1x1 Conv
(256 Linear)

3x3 Conv
(256 stride 2 V)
f

3x3 Conv
(256)

3x3 Conv
(256 stride 2 V)

3x3 Conv
3x3 Conv (384 stride 2 V)
@2 3x3 MaxPool i
1x1 Conv CIEE2N)
(@2) 1x1 Conv.

2)

1x1 Conv.

i
3x3 Conv 3x3 Conv \ (@56) (@56) 1x1 Conv.

1x1 Conv
(32)

1x1 Conv
32

Previous
Layer

Relu activation

Modular building blocks engineering
from He slides “Deep residual learning for image recognition.” ICML. 2016.

see also DenseNets, Wide ResNets, Fractal ResNets, ResNeXts, Pyramidal ResNets



State of the art

Top 1-accuracy, performance and size on ImageNet

80 80
Inception-v3
ResNet-101
75 75 ResNet-50 VGG-16 VGG-19
. ResNet-34
g0 R 70 a ResNet-18
z oy GooglLeNet
e e
3 65 S 65
& b
b I @ BN-NIN
13 g
60 60 5M 35M 65M 95M 125M  155M
BN-AlexNet
55 55 ‘ AlexNet
50 50
0 5 10 15 20 25 30 35 40
N V\e Ak '\« ReJ
R R I T RN e o Operations [G-Ops]
ne' $ N \* \« $ \\6 \\6 85\\ \~\ V\e c ‘\o

See also: https://paperswithcode.com/sota/image-classification-on-imagenet
Canziani, Paszke, and Culurciello. “An Analysis of Deep Neural Network Models for Practical
Applications.” (May 2016).



More ImageNet SOTA

EfficientNet-B6
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0 5 10 15 20 25 30 35 10 15
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Figure 5. FLOPS vs. ImageNet Accuracy — Similar to Figure 1
except it compares FLOPS rather than model size.

Vision Transformer (ViT)

Transformer Encoder

- OOOOY O DT

* Extra learnable
[class] embedding [

Linear Projection of Flattened Patches

SRR
i -

IIIIII
T e

@ Mingxing Tan, Quoc V. Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, ICML 2019.
@ Irwan Bello, LambdaNetworks: Modeling long-range Interactions without Attention, ICLR 2021.
@ Dosovitskiy A. et al, An Image is worth 16X16 Words: Transformers for Image Recognition at Scale, ICLR 2021.


https://arxiv.org/abs/1905.11946
https://openreview.net/forum?id=xTJEN-ggl1b
https://arxiv.org/pdf/2010.11929.pdf

State of the art

Method # Params Extra Data ImageNet  ImageNet-ReaL [6]

Top-1  Top-5 Precision@1
ResNet-50 [24] 26M - 76.0 93.0 82.94
ResNet-152 [24] 60M - 77.8 938 84.79
DenseNet-264 [28] 34M - 779 939 -
Inception-v3 [62] 24M - 78.8 944 83.58
Xception [11] 23M - 790 945 -
Inception-v4 [61] 48M - 80.0 95.0 -
Inception-resnet-v2 [61] 56M - 80.1  95.1 -
ResNeXt-101 [75] 84M - 80.9 95.6 85.18
PolyNet [¢7] 92M - 813 958 -
SENet [27] 146M - 827 962 -
NASNet-A [90] 89M - 827 962 82.56
AmoebaNet-A [52] 87M - 82.8  96.1 -
PNASNet [19] 86M - 829  96.2 -
AmoebaNet-C + AutoAugment [12] 155M - 835 965 -
GPipe [29] 55TM - 84.3 97.0 -
EfficientNet-B7 [63] 66M - 850 972 -
EfficientNet-B7 + FixRes [70] 66M - 853 974 -
EfficientNet-L2 [63] 480M - 855 975 -
ResNet-50 Billion-scale SSL [79] 26M 3.5B labeled Instagram  81.2  96.0 -
ResNeXt-101 Billion-scale SSL [79] 193M 3.5B labeled Instagram  84.8 - -
ResNeXt-101 WSL [42] 829M 3.5B labeled Instagram 854 97.6 88.19
FixRes ResNeXt-101 WSL [69] 829M 3.5B labeled Instagram  86.4  98.0 89.73
Big Transfer (BiT-L) [33] 928M 300M labeled JFT 87.5 98.5 90.54
Noisy Student (EfficientNet-L2) [77] 480M 300M unlabeled JET 88.4 98.7 90.55
Noisy Student + FixRes [70] 480M 300M unlabeled JFT 88.5 98.7 -
Vision Transformer (ViT-H) [14] 632M 300M labeled JFT 8855 — 90.72
EfficientNet-L2-NoisyStudent + SAM [16] 480M 300M unlabeled JET ~ 88.6  98.6 -
Meta Pseudo Labels (EfficientNet-B6-Wide) 390M 300M unlabeled JET ~ 90.0  98.7 9112
Meta Pseudo Labels (EfficientNet-L2) 480M 300M unlabeled JET ~ 90.2  98.8 91.02

Meta Pseudo Labels, Hieu Pham et al. (Jan 2021)
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Pre-trained models
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Pre-trained models

Training a model on ImageNet from scratch takes days or weeks.

Many models trained on ImageNet and their weights are publicly
available!

TransfFer learning
e Use pre-trained weights, remove last layers to compute
representations of images
e Train a classification model from these features on a new
classification task
e The network is used as a generic feature extractor
e Better than handcrafted feature extraction on natural images
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Pre-trained models

Training a model on ImageNet from scratch takes days or weeks.

Many models trained on ImageNet and their weights are publicly
available!

Fine-tuning

Retraining the (some) parameters of the network (given enough data)
e Truncate the last layer(s) of the pre-trained network
e Freeze the remaining layers weights
e Add a (linear) classifier on top and train it for a few epochs

e Then fine-tune the whole network or the few deepest layers
e Use a smaller learning rate when fine tuning
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Data Augmentation

See also: RandAugment and Unsupervised Data Augmentation for Consistency Training.


https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1904.12848
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Data Augmentation (with Keras)

from keras.preprocessing.image import ImageDataGenerator

image_gen = ImageDataGenerator(
rescale=1. / 255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
channel_shift_range=9,
fill_mode="nearest'

train_flow = image_gen.flow_from_directory(train_folder)
model.fit_generator(train_flow, train_flow.n)
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Beyond Image Classification
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Beyond Image Classification

Limitations of CNNs
e Mostly on centered images
e Only a single object perimage
e Not enough for many real world vision tasks
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Beyond Image Classification

Classification
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Beyond Image Classification
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Beyond Image Classification

Classification Classif + Localisation
1 N 2T

multiple
objects

R

Object Detection
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Beyond Image Classification

Classification Classif + Localisation
N e

multiple
objects

A P

Object Detection Semantic Segmentation
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Beyond Image Classification

Classification Classif + Localisation
1 N 2T

multiple
objects

o I R

Object Detection Instance Segmentation
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Beyond Image Classification

Simple Localization as regression
Detection Algorithms
Fully convolutional Networks

Semantic & Instance Segmentation
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e Single object perimage
e Predict coordinates of a bounding box (x, y, w, h)
e Evaluate via Interection over Union (loU)
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Localization as regression

prediction

1204
240.6
46.4
51.1
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Localization as regression

prediction

ground truth

120.4
240.6

51.1

L2 loss
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Classification + Localization

class scores

I3

7x7x2048
conv feature map
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Classification + Localization

7X7x2048
conv feature map

Use a pre-trained CNN on ImageNet (e.g. ResNet)

The “localization head” is trained seperately with regression

Possible end-to-end finetuning of both tasks
At test time, use both heads

class scores

| -0

box coordinates



Classification + Localization

class scores

H+

| -0

— box coordinates

7x7x2048 ]
conv feature map

C classes, 4 output dimensions (1 box).

Predict exactly N objects: predict (N x 4) coordinates and (N x K) class scores.

54
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Object detection

We don't know in advance the number of objects in the image. Object
detection relies on object proposal and object classification.

Object proposal: find regions of interest (Rols) in the image.

Object classification: classify the object in these regions.

Two main families:

e Single-Stage: A grid in the image where each cell is a proposal (SSD,
YOLO, RetinaNet).

e Two-Stage: Region proposal then classification (Faster-RCNN).
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YOLO

SxS grdut

For each cell of the S x S predict: B boxes and confidence scores C' (5 x B values) + classes ¢

Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” CVPR (2016)
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Bounding boxes + confidence

S x Sgrid on input Final detections

Class probability map

For each cell of the S x S predict: B boxes and confidence scores C' (5 x B values) + classes ¢

Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” CVPR (2016)
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Bounding boxes + confidence

S x Sgrid on input Final detections

Class probability map

Final detections: C; x prob(c) > threshold

Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” CVPR (2016)



59

YOLO

Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” CVPR (2016)
e After ImageNet pretraining, the whole network is trained end-to-end

e The loss is a weighted sum of different regressions

s? B ,
Acoord Z Z ]12';-] [(itz - 121)2 + (Zh - gz)z]
i=0j=0
s?2 B . N — 2
+ Amordzz 13};’ |:(\/'wi - V'lf)i) + (\/ hi —/ hi) ]
i=0 j=0
s?2 B ) s
S5 (ea)
i=0 j=0

s?2 B ) s
+ Anoobj Z Z 12‘?‘” (Ci — Ci)

i=0j=0

52
+301 3T (pile) = pi(e)® B
=0
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RetinaNet

class+box
nets

(a) ResNet (b) feature pyramid net

classtbox | -
subnets p

(c) class subnet (top) (d) box subnet (bottom)

Lin, Tsung-Yi, et al. “Focal loss for dense object detection.” ICCV 2017.

Single stage detector with:

e Multiple scales through a Feature Pyramid Network

e Focal loss to manage imbalance between background and real objects

See: https://towardsdatascience.com/review-retinanet-focal-loss-object-detection-38fba6afabe4
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Box Proposals

Instead of having a predefined set of box proposals, find them on the
image:

o Selective Search - from pixels (not learnt, no longer used).

e Faster - RCNN - Region Proposal Network (RPN).

Girshick, Ross, et al. “Fast r-cnn.” ICCV 2015

Crop-and-resize operator (Rol-Pooling):

e Input: convolutional map + /N regions of interest

e Output: tensorof NV X 7 x 7 X depth boxes

¢ Allows to propagate gradient only on interesting regions, and
efficient computation
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Faster-RCNN

Ren, Shaoqing, et al. “Faster r-cnn: Towards real-time object
classifier detection with region proposal networks.” NIPS 2015
Upooling e Train jointly RPN and other head
e 200 box proposals, gradient
propagated only in positive boxes

proposals

Region Proposal Networg « Region proposal is translation invariant,

compared to YOLO

feature maps

conv layers




Measuring performance

method testsize | feature | | mAP@[0.5:0.95] | AP, | AP, | AP,
shorter edge/max size | pyramid

R-FCN [17] 600/1000 32.1 12.8 | 349 | 46.1
Faster R-CNN (2fc) 600/1000 30.3 99 | 322 | 474
Deformable [3] 600/1000 Vv 345 14.0 | 37.7 | 50.3
G-RMI [13] 600/1000 35.6 - - -

FPN [19] 800/1200 4 36.2 182 | 39.0 | 482
Mask R-CNN [7] 800/1200 V4 V4 38.2 20.1 | 41.1 | 50.2
RetinaNet [20] 800/1200 4 37.8 202 | 41.1 | 49.2
RetinaNet ms-train [20] 800/1200 Vv 39.1 21.8 | 42.7 | 50.2
Light head R-CNN 800/1200 v 39.5 21.8 | 43.0 | 50.7
Light head R-CNN ms-train 800/1200 Vv 40.8 227 | 443 | 528
Light head R-CNN 800/1200 4 Vv 41.5 252 | 453 | 53.1

Measures: mean Average Precision mAP at given loU thresholds

Zeming Li et al. Light-Head R-CNN: In Defense of Two-Stage Object Detector 2017

e AP @0.5 for class “cat”: average precision for the class, where ]oU(boa:p"Ed, bowt’“e) > 0.5



State-of-the-art

Model FLOPs  # Params APy APiegi-dev
SpineNet-190 (1536) [11] 2076B 176.2M 522 52.5
DetectoRS ResNeXt-101-64x4d [43] — — — 55.71
SpineNet-190 (1280) [11] 1885B 164M 52.6 52.8
SpineNet-190 (1280) w/ self-training [7!]  1885B 164M 54.2 54.3
EfficientDet-D7x (1536) [50] 410B 7IM 54.4 55.1
YOLOvV4-P7 (1536) [60] — — — 55.8
Cascade Eff-B7 NAS-FPN (1280) 1440B 185M 54.5 54.8
w/ Copy-Paste 1440B 185M  (+1.4)559 (+1.2)56.0
w/ self-training Copy-Paste 1440B I185M  (+2.5)57.0 (+2.5)57.3

Ghiasi G. et al. Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation, 2020

e Largerimage sizes, larger and better models, better augmented data
e https://paperswithcode.com/sota/object-detection-on-coco



65

Other works

e New approaches try to avoid using anchors

e CornerNet only predicts the two extreme edges of a box:

Heatmaps Embeddings

Top-Left Cornem<4 4- I

- - |

Bottom-Right Corners ~— -

Law, Hei, and Deng, Jia. “CornerNet: Detecting Objects as Paired Keypoints” ECCV 2018



Other works

e New approaches try to avoid using anchors

e DeTr uses a Transformer to map a set of features to a set of boxes (with different
cardinality)

"
backbone | encoder

| GOEDoED |

""""""""""" e T T T T T ————
decoder ii—predlctlon heads |

transformer
decoder

R

object queries

transformer
encoder

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. “End-to-End Object Detection
with Transformers” ECCV 2020

The loss is a pair-wise matching between ground truth and prediction set.
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Segmentation

Output a class map for each pixel (here: dog vs background)

¢ Instance segmentation: specify each object instance as well (two
dogs have different instances)
e This can be done through object detection + segmentation



Convolutionize

Eﬁﬁﬁ_a_@_q
G R SR
o° \

convolutionalization

¢ tabby cat heatmap

000 O
50 PR

“tabby cat”

Long, Jonathan, et al. “Fully convolutional networks for semantic segmentation.” CVPR 2015

e Slide the network with an input of (224, 224) over a larger image. Output of varying spatial size

e Convolutionize: change Dense (4096, 1000) to 1 X 1 Convolution, with 4096, 1000 input and
output channels

e Gives a coarse segmentation (no extra supervision)
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Fully Convolutional Network

X

forward/inference

_ backward/learning

Long, Jonathan, et al. “Fully convolutional networks for semantic segmentation.” CVPR 2015

e Predict / backpropagate for every output pixel

@ Aggregate maps from several convolutions at different scales for more robust results
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Deconvolution

Deconvolution network 1exiy

56x56
28x28
7x7 14x14
Unpooling A
Unpooling
\Enpcoling
\Linpooling
~~Unpooling

~

Noh, Hyeonwoo, et al. “Learning deconvolution network for semantic segmentation.” ICCV 2015

e “Deconvolution”: transposed convolutions

Convolution



Deconvolution

224x224

Deconvolution network 1a2xLy

56x56
28x28

7x7 14x14

Max f
Max . i Unpoolin:
pooling DOD!IH? ______________ P o Unpooling
---------------- e \Enpcoling
\Linpooling
~Unpooling
~

Noh, Hyeonwoo, et al. “Learning deconvolution network for semantic segmentation.” ICCV 2015

e skip connections between corresponding convolution and deconvolution layers
e sharper masks by using precise spatial information (early layers)
e better object detection by using semantic information (late layers)

7
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Hourglass network

Newell, Alejandro, et al. “Stacked Hourglass Networks for Human Pose Estimation.” ECCV 2016

e U-Net like architectures repeated sequentially.
e Each block refines the segmentation for the following.
e Each block has a segmentation loss.
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Mask-RCNN

K. He and al. Mask Region-based Convolutional Network (Mask R-CNN) NIPS 2017

Faster-RCNN architecture with a third, binary mask head
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K. He and al. Mask Region-based Convolutional Network (Mask R-CNN) NIPS 2017

@ Mask results are still coarse (low mask resolution)
e Excellent instance generalization
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He, Kaiming, et al. “Mask r-cnn.” Internal Conference on Computer Vision (ICCV), 2017.
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State-of-the-art & links

Most benchmarks and recent architectures are reported here:

https://paperswithcode.com/area/computer-vision

Tensorflow
object detection API

Pytorch

Detectron https://github.com/facebookresearch/Detectron
e Mask-RCNN, Retina Net and other architectures
e Focal loss, Feature Pyramid Networks, etc.


https://github.com/tensorflow/models/tree/master/research/object_detection

