
Convolutional Neural Networks (CNN)

Alejandro Veloz

Used everywhere for Vision

2

Many other applications

Speech recognition & speech synthesis

Natural Language Processing

Protein/DNA binding prediction

Any problem with a spatial (or sequential) structure

3

ConvNets for image classification

CNN = Convolutional Neural Networks = ConvNet

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document

recognition.

4

Outline

Convolutions

CNNs for Image Classification

CNN Architectures

5

Convolutions

6

Motivations: Standard Dense Layer for an image

input

x = Input((640, 480, 3), dtype='float32')

shape of x is: (None, 640, 480, 3)

x = Flatten()(x)

shape of x is: (None, 640 x 480 x 3)

z = Dense(1000)(x)

Howmany parameters in the Dense layer?

640 × 480 × 3 × 1000 + 1000 = 922𝑀!

Spatial organization of the input is destroyed by Flatten

We never use Dense layers directly on large images. Most standard solution is convolution layers

7

Fully Connected Network: MLP

input_image = Input(shape=(28, 28, 1))

x = Flatten()(input_image)

x = Dense(256, activation='relu')(x)

x = Dense(10, activation='softmax')(x)

mlp = Model(inputs=input_image, outputs=x)

Convolutional Network

input_image = Input(shape=(28, 28, 1))

*x = Conv2D(32, 5, activation='relu')(input_image)

*x = MaxPool2D(2, strides=2)(x)

*x = Conv2D(64, 3, activation='relu')(x)

*x = MaxPool2D(2, strides=2)(x)

x = Flatten()(x)

x = Dense(256, activation='relu')(x)

x = Dense(10, activation='softmax')(x)

convnet = Model(inputs=input_image, outputs=x)

2D spatial organization of features preserved untill ‘Flatten‘.8

Convolution in a neural network

𝑥 is a 3 × 3 chunk (dark area) of the image (blue array)

Each output neuron is parametrized with the 3 × 3 weight matrix w (small

numbers)

https://github.com/vdumoulin/conv_arithmetic

9

Convolution in a neural network
𝑥 is a 3 × 3 chunk

(dark area) of the

image (blue array)

Each output neuron

is parametrized with

the 3 × 3 weight

matrix w (small

numbers)

The activation obtained

by sliding the 3 × 3
window and computing:

𝑧(𝑥) = 𝑟𝑒𝑙𝑢(w𝑇𝑥 + 𝑏)

10

Convolution in a neural network
𝑥 is a 3 × 3 chunk

(dark area) of the

image (blue array)

Each output neuron

is parametrized with

the 3 × 3 weight

matrix w (small

numbers)

The activation obtained

by sliding the 3 × 3
window and computing:

𝑧(𝑥) = 𝑟𝑒𝑙𝑢(w𝑇𝑥 + 𝑏)

10

Convolution in a neural network
𝑥 is a 3 × 3 chunk

(dark area) of the

image (blue array)

Each output neuron

is parametrized with

the 3 × 3 weight

matrix w (small

numbers)

The activation obtained

by sliding the 3 × 3
window and computing:

𝑧(𝑥) = 𝑟𝑒𝑙𝑢(w𝑇𝑥 + 𝑏)

10

Convolution in a neural network
𝑥 is a 3 × 3 chunk

(dark area) of the

image (blue array)

Each output neuron

is parametrized with

the 3 × 3 weight

matrix w (small

numbers)

The activation obtained

by sliding the 3 × 3
window and computing:

𝑧(𝑥) = 𝑟𝑒𝑙𝑢(w𝑇𝑥 + 𝑏)

10

Convolution in a neural network
𝑥 is a 3 × 3 chunk

(dark area) of the

image (blue array)

Each output neuron

is parametrized with

the 3 × 3 weight

matrix w (small

numbers)

The activation obtained

by sliding the 3 × 3
window and computing:

𝑧(𝑥) = 𝑟𝑒𝑙𝑢(w𝑇𝑥 + 𝑏)

10

Convolution in a neural network
𝑥 is a 3 × 3 chunk

(dark area) of the

image (blue array)

Each output neuron

is parametrized with

the 3 × 3 weight

matrix w (small

numbers)

The activation obtained

by sliding the 3 × 3
window and computing:

𝑧(𝑥) = 𝑟𝑒𝑙𝑢(w𝑇𝑥 + 𝑏)

10

Convolution in a neural network
𝑥 is a 3 × 3 chunk

(dark area) of the

image (blue array)

Each output neuron

is parametrized with

the 3 × 3 weight

matrix w (small

numbers)

The activation obtained

by sliding the 3 × 3
window and computing:

𝑧(𝑥) = 𝑟𝑒𝑙𝑢(w𝑇𝑥 + 𝑏)

10

Convolution in a neural network
𝑥 is a 3 × 3 chunk

(dark area) of the

image (blue array)

Each output neuron

is parametrized with

the 3 × 3 weight

matrix w (small

numbers)

The activation obtained

by sliding the 3 × 3
window and computing:

𝑧(𝑥) = 𝑟𝑒𝑙𝑢(w𝑇𝑥 + 𝑏)

10

Convolution in a neural network
𝑥 is a 3 × 3 chunk

(dark area) of the

image (blue array)

Each output neuron

is parametrized with

the 3 × 3 weight

matrix w (small

numbers)

The activation obtained

by sliding the 3 × 3
window and computing:

𝑧(𝑥) = 𝑟𝑒𝑙𝑢(w𝑇𝑥 + 𝑏)

10

Motivations

Local connectivity

A neuron depends only on a few local input neurons

Translation invariance

Comparison to Fully connected

Parameter sharing: reduce overfitting

Make use of spatial structure: strong prior for vision!

Animal Vision Analogy
Hubel & Wiesel, RECEPTIVE FIELDS OF SINGLE NEURONS IN THE CAT’S STRIATE CORTEX (1959)

11

Why Convolution

Discrete convolution (actually cross-correlation) between two functions 𝑓 and 𝑔:

(𝑓 ⋆ 𝑔)(𝑥) = ∑
𝑎+𝑏=𝑥

𝑓(𝑎) 𝑔(𝑏) = ∑
𝑎

𝑓(𝑎) 𝑔(𝑥 + 𝑎)

2D-convolutions (actually 2D cross-correlation):

(𝑓 ⋆ 𝑔)(𝑥, 𝑦) = ∑
𝑛

∑
𝑚

𝑓(𝑛, 𝑚) 𝑔(𝑥 + 𝑛, 𝑦 + 𝑚)

𝑓 is a convolution kernel or filter applied to the 2-d map 𝑔 (our image).

12

Example: convolution image

Image: 𝑖𝑚 of dimensions 5 × 5
Kernel: 𝑘 of dimensions 3 × 3

(𝑘 ⋆ 𝑖𝑚)(𝑥, 𝑦) =
2

∑
𝑛=0

2
∑
𝑚=0

𝑘(𝑛, 𝑚) 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

13

Example: convolution image

Image: 𝑖𝑚 of dimensions 5 × 5
Kernel: 𝑘 of dimensions 3 × 3

(𝑘 ⋆ 𝑖𝑚)(𝑥, 𝑦) =
2

∑
𝑛=0

2
∑
𝑚=0

𝑘(𝑛, 𝑚) 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

13

Example: convolution image

Image: 𝑖𝑚 of dimensions 5 × 5
Kernel: 𝑘 of dimensions 3 × 3

(𝑘 ⋆ 𝑖𝑚)(𝑥, 𝑦) =
2

∑
𝑛=0

2
∑
𝑚=0

𝑘(𝑛, 𝑚) 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

13

Example: convolution image

Image: 𝑖𝑚 of dimensions 5 × 5
Kernel: 𝑘 of dimensions 3 × 3

(𝑘 ⋆ 𝑖𝑚)(𝑥, 𝑦) =
2

∑
𝑛=0

2
∑
𝑚=0

𝑘(𝑛, 𝑚) 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

13

Example: convolution image

Image: 𝑖𝑚 of dimensions 5 × 5
Kernel: 𝑘 of dimensions 3 × 3

(𝑘 ⋆ 𝑖𝑚)(𝑥, 𝑦) =
2

∑
𝑛=0

2
∑
𝑚=0

𝑘(𝑛, 𝑚) 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

13

Example: convolution image

Image: 𝑖𝑚 of dimensions 5 × 5
Kernel: 𝑘 of dimensions 3 × 3

(𝑘 ⋆ 𝑖𝑚)(𝑥, 𝑦) =
2

∑
𝑛=0

2
∑
𝑚=0

𝑘(𝑛, 𝑚) 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

13

Example: convolution image

Image: 𝑖𝑚 of dimensions 5 × 5
Kernel: 𝑘 of dimensions 3 × 3

(𝑘 ⋆ 𝑖𝑚)(𝑥, 𝑦) =
2

∑
𝑛=0

2
∑
𝑚=0

𝑘(𝑛, 𝑚) 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

13

Example: convolution image

Image: 𝑖𝑚 of dimensions 5 × 5
Kernel: 𝑘 of dimensions 3 × 3

(𝑘 ⋆ 𝑖𝑚)(𝑥, 𝑦) =
2

∑
𝑛=0

2
∑
𝑚=0

𝑘(𝑛, 𝑚) 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

13

Example: convolution image

Image: 𝑖𝑚 of dimensions 5 × 5
Kernel: 𝑘 of dimensions 3 × 3

(𝑘 ⋆ 𝑖𝑚)(𝑥, 𝑦) =
2

∑
𝑛=0

2
∑
𝑚=0

𝑘(𝑛, 𝑚) 𝑖𝑚(𝑥 + 𝑛 − 1, 𝑦 + 𝑚 − 1)

13

Channels
Colored image = tensor of shape (height, width, channels)

Convolutions are usually computed for each channel and summed:

5x5x3

28x28x3

24x24

(𝑘 ⋆ 𝑖𝑚𝑐𝑜𝑙𝑜𝑟) =
2

∑
𝑐=0

𝑘𝑐 ⋆ 𝑖𝑚𝑐

14

Multiple convolutions

15

Multiple convolutions

15

Multiple convolutions

15

Multiple convolutions

15

Multiple convolutions

5x5x3x4

28x28x3

24x24x4

Kernel size aka receptive field (usually 1, 3, 5, 7, 11)

Output dimension: length - kernel_size + 1

16

Strides

Strides: increment step size for the convolution operator

Reduces the size of the output map

Example with kernel size 3 × 3 and a stride of 2 (image in blue)

17

Strides

Strides: increment step size for the convolution operator

Reduces the size of the output map

Example with kernel size 3 × 3 and a stride of 2 (image in blue)

17

Strides

Strides: increment step size for the convolution operator

Reduces the size of the output map

Example with kernel size 3 × 3 and a stride of 2 (image in blue)

17

Strides

Strides: increment step size for the convolution operator

Reduces the size of the output map

Example with kernel size 3 × 3 and a stride of 2 (image in blue)

17

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Padding
Padding: artificially fill borders of image

Useful to keep spatial dimension constant across filters

Useful with strides and large receptive fields

Usually: fill with 0s

18

Dealing with shapes

5x5x3x4
Kernel or Filter shape (𝐹 , 𝐹 , 𝐶𝑖, 𝐶𝑜):

𝐹 × 𝐹 kernel size

𝐶𝑖 input channels
𝐶𝑜 output channels

Number of parameters:

(𝐹 × 𝐹 × 𝐶𝑖 + 1) × 𝐶𝑜

Activations or Feature maps shape:

Input (𝑊 𝑖, 𝐻𝑖, 𝐶𝑖)
Output (𝑊 𝑜, 𝐻𝑜, 𝐶𝑜)

𝑊 𝑜 = (𝑊 𝑖 − 𝐹 + 2𝑃)/𝑆 + 1

19

Pooling

Spatial dimension reduction

Local invariance

No parameters: max or average of 2x2 units

http://cs231n.github.io/convolutional-networks

20

Pooling

Spatial dimension reduction

Local invariance

No parameters: max or average of 2x2 units

28x28x3

14x14x3

no parameters!

21

Architectures

22

Classic ConvNet Architecture

Input

Conv blocks
Convolution + activation (relu)

Convolution + activation (relu)

…

Maxpooling 2x2

Output

Fully connected layers

Softmax

23

AlexNet

Simplified version of Krizhevsky, Alex, Sutskever, and Hinton. “Imagenet classification with deep convolutional neural networks.”

NIPS 2012

Input: 227x227x3 image

First conv layer: kernel 11x11x3x96 stride 4

Kernel shape: (11,11,3,96)

Output shape: (55,55,96)

Number of parameters: 34,944

Equivalent MLP parameters: 43.7 x 1e9

24

AlexNet

INPUT: [227x227x3]

CONV1: [55x55x96] 96 11x11 filters at stride 4, pad 0

MAX POOL1: [27x27x96] 3x3 filters at stride 2

CONV2: [27x27x256] 256 5x5 filters at stride 1, pad 2

MAX POOL2: [13x13x256] 3x3 filters at stride 2

CONV3: [13x13x384] 384 3x3 filters at stride 1, pad 1

CONV4: [13x13x384] 384 3x3 filters at stride 1, pad 1

CONV5: [13x13x256] 256 3x3 filters at stride 1, pad 1

MAX POOL3: [6x6x256] 3x3 filters at stride 2

FC6: [4096] 4096 neurons

FC7: [4096] 4096 neurons

FC8: [1000] 1000 neurons (softmax logits)

25

Hierarchical representation

26

VGG-16

Simonyan, Karen, and Zisserman. “Very deep convolutional networks for large-scale image recognition.”

(2014)

27

VGG in Keras

model.add(Convolution2D(64, 3, 3, activation='relu',

input_shape=(3,224,224)))

model.add(Convolution2D(64, 3, 3, activation='relu'))

model.add(MaxPooling2D((2,2), strides=(2,2)))

model.add(Convolution2D(128, 3, 3, activation='relu'))

model.add(Convolution2D(128, 3, 3, activation='relu'))

model.add(MaxPooling2D((2,2), strides=(2,2)))

model.add(Convolution2D(256, 3, 3, activation='relu'))

model.add(Convolution2D(256, 3, 3, activation='relu'))

model.add(Convolution2D(256, 3, 3, activation='relu'))

model.add(MaxPooling2D((2,2), strides=(2,2)))

model.add(Convolution2D(512, 3, 3, activation='relu'))

model.add(Convolution2D(512, 3, 3, activation='relu'))

model.add(Convolution2D(512, 3, 3, activation='relu'))

model.add(MaxPooling2D((2,2), strides=(2,2)))

model.add(Convolution2D(512, 3, 3, activation='relu'))

model.add(Convolution2D(512, 3, 3, activation='relu'))

model.add(Convolution2D(512, 3, 3, activation='relu'))

model.add(MaxPooling2D((2,2), strides=(2,2)))

model.add(Flatten())

model.add(Dense(4096, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(4096, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(1000, activation='softmax'))

28

Memory and Parameters

Activation maps Parameters

INPUT: [224x224x3] = 150K 0

CONV3-64: [224x224x64] = 3.2M (3x3x3)x64 = 1,728 (*)

CONV3-64: [224x224x64] = 3.2M (3x3x64)x64 = 36,864 (*)

POOL2: [112x112x64] = 800K 0

CONV3-128: [112x112x128] = 1.6M (3x3x64)x128 = 73,728

CONV3-128: [112x112x128] = 1.6M (3x3x128)x128 = 147,456

POOL2: [56x56x128] = 400K 0

CONV3-256: [56x56x256] = 800K (3x3x128)x256 = 294,912

CONV3-256: [56x56x256] = 800K (3x3x256)x256 = 589,824

CONV3-256: [56x56x256] = 800K (3x3x256)x256 = 589,824

POOL2: [28x28x256] = 200K 0

CONV3-512: [28x28x512] = 400K (3x3x256)x512 = 1,179,648

CONV3-512: [28x28x512] = 400K (3x3x512)x512 = 2,359,296

CONV3-512: [28x28x512] = 400K (3x3x512)x512 = 2,359,296

POOL2: [14x14x512] = 100K 0

CONV3-512: [14x14x512] = 100K (3x3x512)x512 = 2,359,296

CONV3-512: [14x14x512] = 100K (3x3x512)x512 = 2,359,296

CONV3-512: [14x14x512] = 100K (3x3x512)x512 = 2,359,296

POOL2: [7x7x512] = 25K 0

FC: [1x1x4096] = 4096 7x7x512x4096 = 102,760,448 (*)

FC: [1x1x4096] = 4096 4096x4096 = 16,777,216

FC: [1x1x1000] = 1000 4096x1000 = 4,096,000

TOTAL activations:

24M x 4 bytes

~= 93MB / image

(x2 for backward)

TOTAL parameters:

138M x 4 bytes

~= 552MB

(x2 for plain SGD, x4 for Adam)

29

ResNet
He, Kaiming, et al. “Deep residual learning for image recognition.” CVPR. 2016.

Even deeper models: 34, 50, 101, 152 layers

A block learns the residual w.r.t. identity

Good optimization properties

ResNet50 Compared to VGG:

Superior accuracy in all vision tasks 5.25% top-5 error vs

7.1%

Less parameters 25M vs 138M

Computational complexity 3.8B Flops vs 15.3B Flops

Fully Convolutional until the last layer

30

Deeper is better

from Kaiming He slides “Deep residual learning for image recognition.” ICML. 2016.

31

State of the art
Finding right architectures: Active area or research

Modular building blocks engineering

from He slides “Deep residual learning for image recognition.” ICML. 2016.

see also DenseNets, Wide ResNets, Fractal ResNets, ResNeXts, Pyramidal ResNets

32

State of the art
Top 1-accuracy, performance and size on ImageNet

See also: https://paperswithcode.com/sota/image-classification-on-imagenet

Canziani, Paszke, and Culurciello. “An Analysis of Deep Neural Network Models for Practical

Applications.” (May 2016).

33

More ImageNet SOTA

Mingxing Tan, Quoc V. Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, ICML 2019.

Irwan Bello, LambdaNetworks: Modeling long-range Interactions without Attention, ICLR 2021.

Dosovitskiy A. et al, An Image is worth 16X16 Words: Transformers for Image Recognition at Scale, ICLR 2021.

34

https://arxiv.org/abs/1905.11946
https://openreview.net/forum?id=xTJEN-ggl1b
https://arxiv.org/pdf/2010.11929.pdf

State of the art

Meta Pseudo Labels, Hieu Pham et al. (Jan 2021)
35

Pre-trained models

36

Pre-trained models

Training a model on ImageNet from scratch takes days or weeks.

Many models trained on ImageNet and their weights are publicly

available!

Transfer learning

Use pre-trained weights, remove last layers to compute

representations of images

Train a classification model from these features on a new

classification task

The network is used as a generic feature extractor

Better than handcrafted feature extraction on natural images

37

Pre-trained models

Training a model on ImageNet from scratch takes days or weeks.

Many models trained on ImageNet and their weights are publicly

available!

Fine-tuning

Retraining the (some) parameters of the network (given enough data)

Truncate the last layer(s) of the pre-trained network

Freeze the remaining layers weights

Add a (linear) classifier on top and train it for a few epochs

Then fine-tune the whole network or the few deepest layers

Use a smaller learning rate when fine tuning

38

Data Augmentation

See also: RandAugment and Unsupervised Data Augmentation for Consistency Training.

39

https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1904.12848

Data Augmentation (with Keras)

from keras.preprocessing.image import ImageDataGenerator

image_gen = ImageDataGenerator(

rescale=1. / 255,

rotation_range=40,

width_shift_range=0.2,

height_shift_range=0.2,

shear_range=0.2,

zoom_range=0.2,

horizontal_flip=True,

channel_shift_range=9,

fill_mode='nearest'

)

train_flow = image_gen.flow_from_directory(train_folder)

model.fit_generator(train_flow, train_flow.n)

40

Beyond Image Classification

41

Beyond Image Classification

Limitations of CNNs

Mostly on centered images

Only a single object per image

Not enough for many real world vision tasks

42

Beyond Image Classification

43

Beyond Image Classification

44

Beyond Image Classification

45

Beyond Image Classification

46

Beyond Image Classification

47

Beyond Image Classification

Simple Localization as regression

Detection Algorithms

Fully convolutional Networks

Semantic & Instance Segmentation

48

Localization

Single object per image

Predict coordinates of a bounding box (x, y, w, h)

Evaluate via Interection over Union (IoU)
49

Localization as regression

CNN

prediction

50

Localization as regression

CNN

ground truth

prediction

L2 loss

51

Classification + Localization

CNN
conv feature map

7x7x2048

class scores

52

Classification + Localization

CNN
conv feature map

7x7x2048

class scores

box coordinates

Use a pre-trained CNN on ImageNet (e.g. ResNet)

The “localization head” is trained seperately with regression

Possible end-to-end finetuning of both tasks

At test time, use both heads

53

Classification + Localization

CNN
conv feature map

7x7x2048

class scores

box coordinates

𝐶 classes, 4 output dimensions (1 box).

Predict exactly 𝑁 objects: predict (𝑁 × 4) coordinates and (𝑁 × 𝐾) class scores.

54

Object detection

We don’t know in advance the number of objects in the image. Object

detection relies on object proposal and object classification.

Object proposal: find regions of interest (RoIs) in the image.

Object classification: classify the object in these regions.

Two main families:

Single-Stage: A grid in the image where each cell is a proposal (SSD,

YOLO, RetinaNet).

Two-Stage: Region proposal then classification (Faster-RCNN).

55

YOLO

For each cell of the𝑆 × 𝑆 predict: 𝐵 boxes and confidence scores𝐶 (5 × 𝐵 values) + classes 𝑐
Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” CVPR (2016)

56

YOLO

For each cell of the𝑆 × 𝑆 predict: 𝐵 boxes and confidence scores𝐶 (5 × 𝐵 values) + classes 𝑐
Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” CVPR (2016)

57

YOLO

Final detections: 𝐶𝑗 ∗ 𝑝𝑟𝑜𝑏(𝑐) > threshold

Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” CVPR (2016)

58

YOLO
Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” CVPR (2016)

After ImageNet pretraining, the whole network is trained end-to-end

The loss is a weighted sum of different regressions

59

RetinaNet

Lin, Tsung-Yi, et al. “Focal loss for dense object detection.” ICCV 2017.

Single stage detector with:

Multiple scales through a Feature Pyramid Network

Focal loss to manage imbalance between background and real objects

See: https://towardsdatascience.com/review-retinanet-focal-loss-object-detection-38fba6afabe4

60

Box Proposals

Instead of having a predefined set of box proposals, find them on the

image:

Selective Search - from pixels (not learnt, no longer used).

Faster - RCNN - Region Proposal Network (RPN).

Girshick, Ross, et al. “Fast r-cnn.” ICCV 2015

Crop-and-resize operator (RoI-Pooling):

Input: convolutional map + 𝑁 regions of interest

Output: tensor of 𝑁 × 7 × 7 × depth boxes

Allows to propagate gradient only on interesting regions, and

efficient computation
61

Faster-RCNN
Ren, Shaoqing, et al. “Faster r-cnn: Towards real-time object

detection with region proposal networks.” NIPS 2015

Train jointly RPN and other head

200 box proposals, gradient

propagated only in positive boxes

Region proposal is translation invariant,

compared to YOLO

62

Measuring performance

Measures: mean Average PrecisionmAP at given IoU thresholds

Zeming Li et al. Light-Head R-CNN: In Defense of Two-Stage Object Detector 2017

AP@0.5 for class “cat”: average precision for the class, where 𝐼𝑜𝑈(𝑏𝑜𝑥𝑝𝑟𝑒𝑑, 𝑏𝑜𝑥𝑡𝑟𝑢𝑒) > 0.5

63

State-of-the-art

Ghiasi G. et al. Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation, 2020

Larger image sizes, larger and better models, better augmented data

https://paperswithcode.com/sota/object-detection-on-coco

64

Other works

New approaches try to avoid using anchors

CornerNet only predicts the two extreme edges of a box:

Law, Hei, and Deng, Jia. “CornerNet: Detecting Objects as Paired Keypoints” ECCV 2018

65

Other works

New approaches try to avoid using anchors

DeTr uses a Transformer to map a set of features to a set of boxes (with different

cardinality)

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. “End-to-End Object Detection

with Transformers” ECCV 2020

The loss is a pair-wise matching between ground truth and prediction set.

66

Segmentation

Output a class map for each pixel (here: dog vs background)

Instance segmentation: specify each object instance as well (two

dogs have different instances)

This can be done through object detection + segmentation

67

Convolutionize

Long, Jonathan, et al. “Fully convolutional networks for semantic segmentation.” CVPR 2015

Slide the network with an input of (224, 224) over a larger image. Output of varying spatial size

Convolutionize: change Dense (4096, 1000) to 1 × 1 Convolution, with 4096, 1000 input and

output channels

Gives a coarse segmentation (no extra supervision)
68

Fully Convolutional Network

Long, Jonathan, et al. “Fully convolutional networks for semantic segmentation.” CVPR 2015

Predict / backpropagate for every output pixel

Aggregate maps from several convolutions at different scales for more robust results

69

Deconvolution

Noh, Hyeonwoo, et al. “Learning deconvolution network for semantic segmentation.” ICCV 2015

“Deconvolution”: transposed convolutions

70

Deconvolution

Noh, Hyeonwoo, et al. “Learning deconvolution network for semantic segmentation.” ICCV 2015

skip connections between corresponding convolution and deconvolution layers

sharper masks by using precise spatial information (early layers)

better object detection by using semantic information (late layers)

71

Hourglass network

Newell, Alejandro, et al. “Stacked Hourglass Networks for Human Pose Estimation.” ECCV 2016

U-Net like architectures repeated sequentially.

Each block refines the segmentation for the following.

Each block has a segmentation loss.

72

Mask-RCNN

K. He and al. Mask Region-based Convolutional Network (Mask R-CNN) NIPS 2017

Faster-RCNN architecture with a third, binary mask head

73

Results

K. He and al. Mask Region-based Convolutional Network (Mask R-CNN) NIPS 2017

Mask results are still coarse (low mask resolution)

Excellent instance generalization

74

Results

He, Kaiming, et al. “Mask r-cnn.” Internal Conference on Computer Vision (ICCV), 2017.

75

State-of-the-art & links

Most benchmarks and recent architectures are reported here:

https://paperswithcode.com/area/computer-vision

Tensorflow
object detection API

Pytorch

Detectron https://github.com/facebookresearch/Detectron

Mask-RCNN, Retina Net and other architectures

Focal loss, Feature Pyramid Networks, etc.

76

https://github.com/tensorflow/models/tree/master/research/object_detection

