



# Recommender Systems & Embeddings

Alejandro Veloz

# Outline

**Embeddings**

**Dropout Regularization**

**Recommender Systems**

# Embeddings

# Symbolic variable

- Text: characters, words, bigrams...
- Recommender Systems: item ids, user ids
- Any categorical descriptor: tags, movie genres, visited URLs, skills on a resume, product categories...

**Notation:**

Symbol  $s$  in vocabulary  $V$

# One-hot representation

$\text{onehot}(\text{'salad'}) = [0, 0, 1, \dots, 0] \in \{0, 1\}^{|V|}$



- Sparse, discrete, large dimension  $|V|$
- Each axis has a meaning
- Symbols are equidistant from each other:

$$\text{euclidean distance} = \sqrt{2}$$

# Embedding

$\text{embedding}(\text{'salad'}) = [3.28, -0.45, \dots 7.11] \in \mathbb{R}^d$

- Continuous and dense.
- Can represent a huge vocabulary in low dimension, typically:  $d \in \{16, 32, \dots, 4096\}$ .
- Axis have no meaning *a priori*.
- Embedding metric can capture semantic distance.

**Neural Networks compute transformations on continuous vectors**

# Implementation with Keras

Size of vocabulary  $n = |V|$ , size of embedding  $d$

```
# input: batch of integers
Embedding(output_dim=d, input_dim=n, input_length=1)
# output: batch of float vectors
```

- Equivalent to one-hot encoding multiplied by a weight matrix  $\mathbf{W} \in \mathbb{R}^{n \times d}$ :
$$\text{embedding}(x) = \text{onehot}(x) \cdot \mathbf{W}$$
- $\mathbf{W}$  is typically **randomly initialized**, then **tuned by backprop**
- $\mathbf{W}$  are trainable parameters of the model

# Distance and similarity in Embedding space

## Euclidean distance

$$d(x, y) = \|x - y\|_2$$

- Simple with good properties
- Dependent on norm  
(embeddings usually unconstrained)

## Cosine similarity

$$\text{cosine}(x, y) = \frac{x \cdot y}{\|x\| \cdot \|y\|}$$

- Angle between points, regardless of norm
- $\text{cosine}(x, y) \in (-1, 1)$
- Expected cosine similarity of random pairs of vectors is 0

# Distance and similarity in Embedding space

If  $x$  and  $y$  both have unit norms:

$$\|x - y\|_2^2 = 2 \cdot (1 - \text{cosine}(x, y))$$

or alternatively:

$$\text{cosine}(x, y) = 1 - \frac{\|x - y\|_2^2}{2}$$

Alternatively, dot product (unnormalized) is used in practice as a pseudo similarity

# Visualizing Embeddings

- Visualizing requires a projection in 2 or 3 dimensions
- Objective: visualize which embedded symbols are similar

## PCA

- Limited by linear projection, embeddings usually have complex high dimensional structure

## t-SNE

Visualizing data using t-SNE, L van der Maaten, G Hinton, *The Journal of Machine Learning Research*, 2008

# t-Distributed Stochastic Neighbor Embedding

- Unsupervised, low-dimension, non-linear projection
- Optimized to preserve relative distances between nearest neighbors
- Global layout is not necessarily meaningful

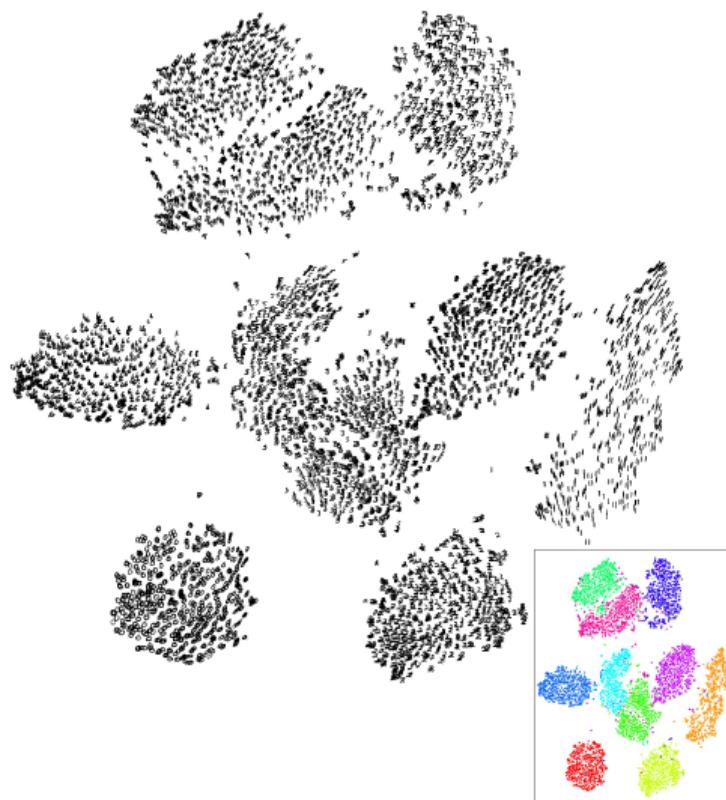
## **t-SNE projection is non deterministic (depends on initialization)**

- Critical parameter: perplexity, usually set to 20, 30
- See <http://distill.pub/2016/misread-tsne/>

# Example word vectors

billmark      mary  
 bob jack      stephen elizabeth  
 tony      edward  
 miss      jimmie      alexander  
 steve      chris andrea      charles  
 joe tom harry      paul joseph      maria  
 mr.      san      frank      louis  
 don      arthur      george      jean  
 ray      martin      thomas  
 simon      howard  
 ben      lee  
 dr.      al      scott      lewis bush  
 r. a.      taylor      fox  
 c. e. h. j.      williams  
 s. w.      jones      ford grant  
 o. b. p.      davis      bell  
 von  
 van  
**titles**  
 s      da      los  
 et      dad      el      san      santa  
 -      des      hong  
 core  
 june      august  
 february      september  
 january      october  
 march      november  
 cape  
 super  
 east  
 south  
 west  
 southeast  
 northeast  
 central  
 southern  
 western  
**countries**  
 mississippi      missouri  
 indiana      mississippi  
 iowa      missouri  
 colorado      colorado  
 washington      washington  
 carolina      carolina  
 houston      houston  
 philadelphia      philadelphia  
 detroit      detroit  
 hollywood      toronto  
 boston      ontario  
 sydney      massachusetts  
 montreal      york  
 manchester      edinburgh  
 london      victoria  
 belfast      quebec  
 moscow      quebec  
 mexico      scotland  
 scotland      wales  
 ireland      britain  
 canada      australasia  
 australia      australasia  
 sweden      australasia  
 singapore      australasia  
 america      norway  
 europe      australasia  
 asia      australasia  
 australasia      britain  
 korea      japan      rome  
 pak      egypt  
 vietnam      israel  
 super  
 usa      philippines  
**regions**  
 central      southern  
 western  
 northeast

# Visualizing Mnist



# Dropout Regularization

# Regularization

**Size of the embeddings**

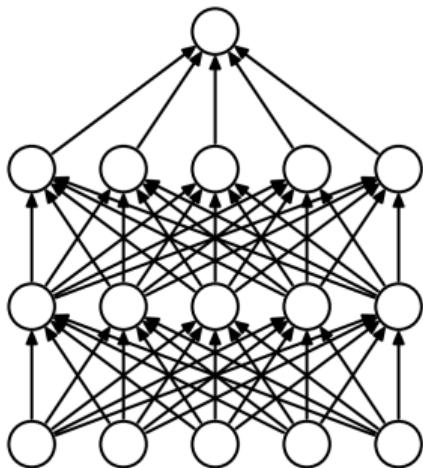
**Depth of the network**

**$L_2$  penalty on embeddings**

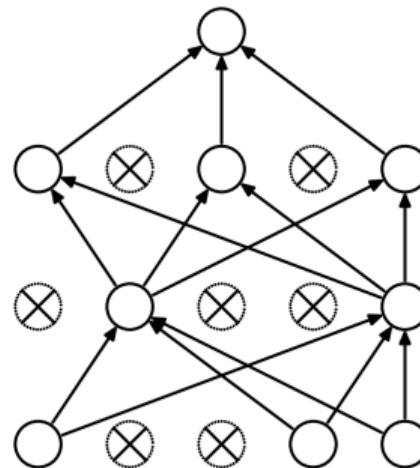
**Dropout**

- Randomly set activations to 0 with probability  $p$
- Bernoulli mask sampled for a forward pass / backward pass pair
- Typically only enabled at training time

# Dropout



(a) Standard Neural Net



(b) After applying dropout.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al., *Journal of Machine Learning Research* 2014

# Dropout

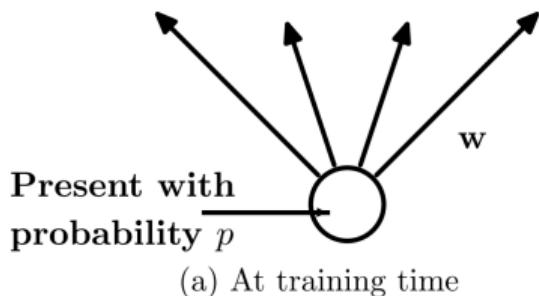
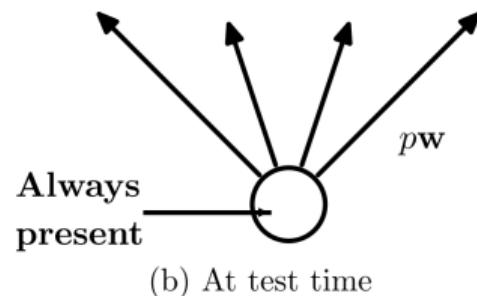
## Interpretation

- Reduces the network dependency to individual neurons
- More redundant representation of data

## Ensemble interpretation

- Equivalent to training a large ensemble of shared-parameters, binary-masked models
- Each model is only trained on a single data point

# Dropout

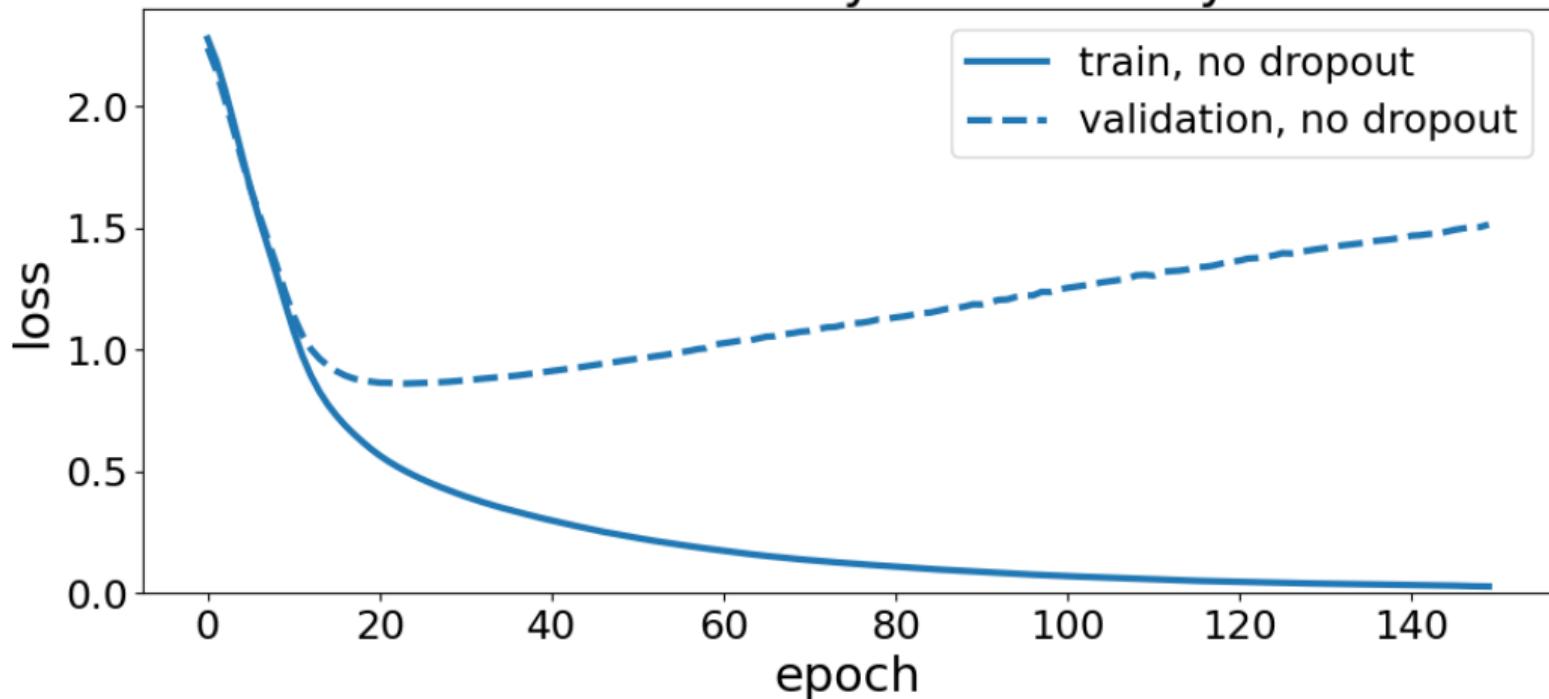


At test time, multiply weights by  $p$  to keep same level of activation.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al., *Journal of Machine Learning Research* 2014

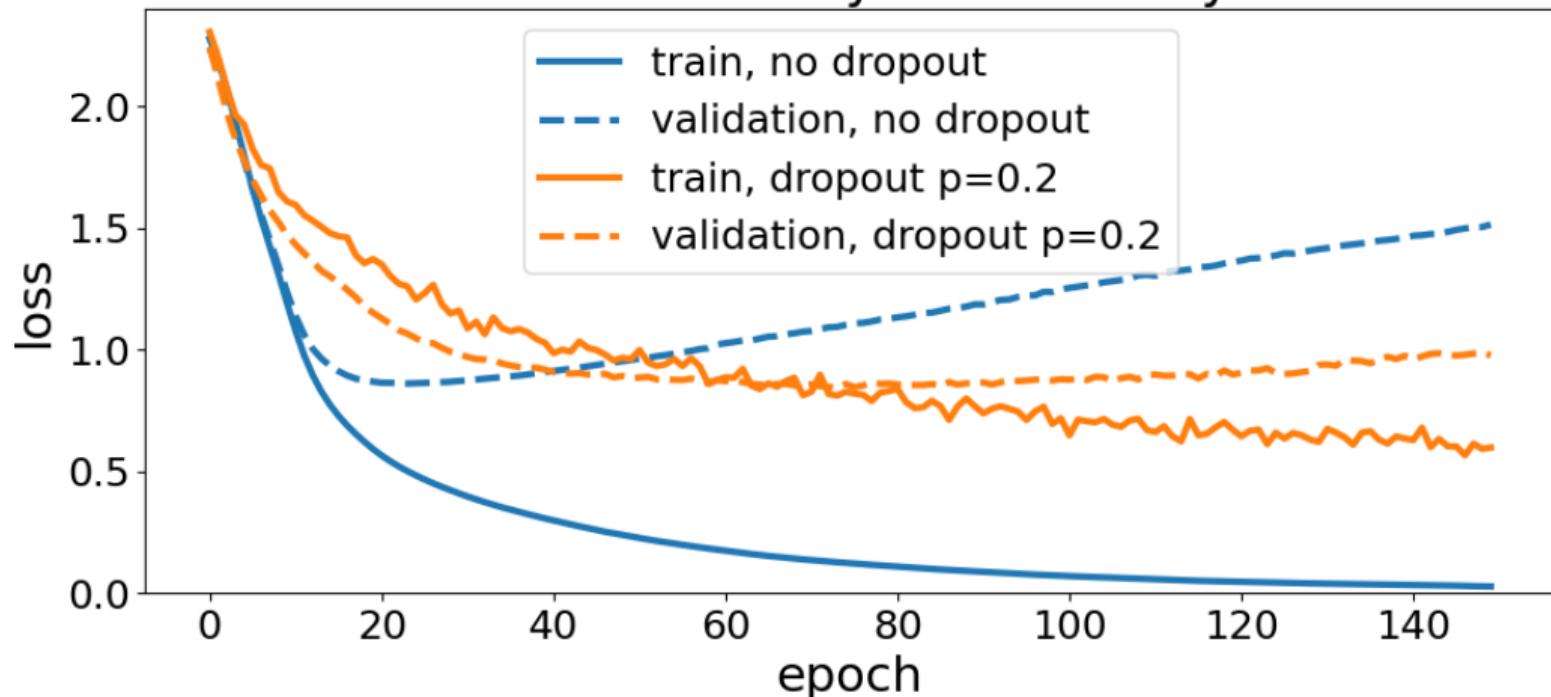
# Overfitting Noise

MLP with 3 hidden layers and noisy labels



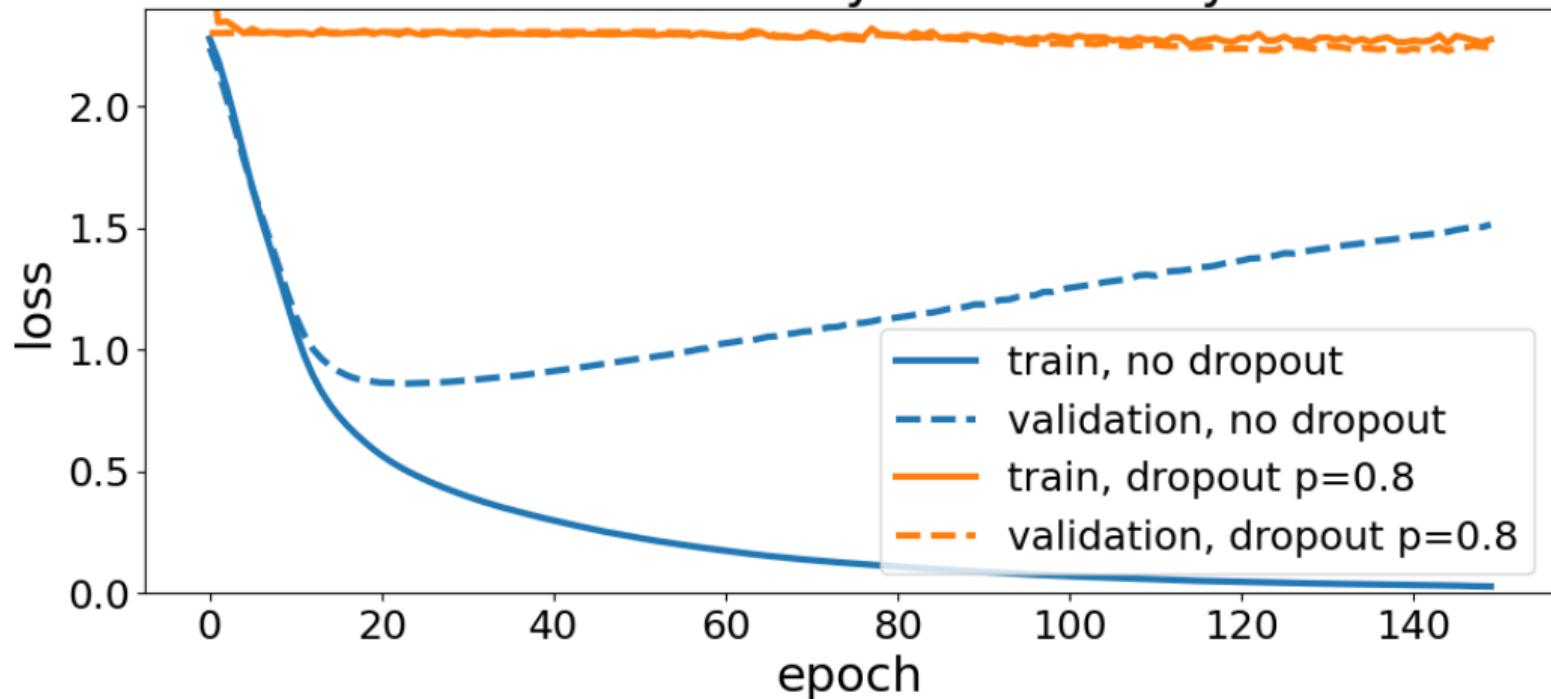
# A bit of Dropout

MLP with 3 hidden layers and noisy labels



# Too much: Underfitting

MLP with 3 hidden layers and noisy labels



# Implementation with Keras

```
model = Sequential()
model.add(Dense(hidden_size, input_shape, activation='relu'))
model.add(Dropout(p=0.5)) # =====
model.add(Dense(hidden_size, activation='relu'))
model.add(Dropout(p=0.5)) # =====
model.add(Dense(output_size, activation='softmax'))
```

# Recommender Systems

# Recommender Systems

## Recommend contents and products

Movies on Netflix and YouTube, weekly playlist and related Artists on Spotify, books on Amazon, related apps on app stores, “Who to Follow” on twitter...

## Prioritized social media status updates

## Personalized search engine results

## Personalized ads and RTB

# RecSys

## Content-based vs Collaborative Filtering (CF)

**Content-based:** user metadata (gender, age, location...) and item metadata (year, genre, director, actors)

**Collaborative Filtering:** past user/item interactions: stars, plays, likes, clicks

**Hybrid systems:** CF + metadata to mitigate the cold-start problem

# Explicit vs Implicit Feedback

**Explicit:** positive and negative feedback

- Examples: review stars and votes
- Regression metrics: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE)...

**Implicit:** positive feedback only

- Examples: page views, plays, comments...
- Ranking metrics: ROC AUC, precision at rank, NDCG...

# Explicit vs Implicit Feedback

**Implicit** feedback much more **abundant** than explicit feedback

Explicit feedback does not always reflect **actual user behaviors**

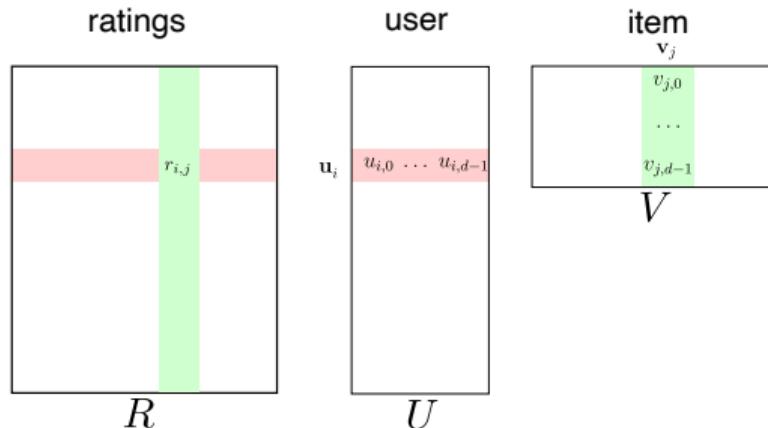
- Self-declared independent movie enthusiast but watch a majority of blockbusters

**Implicit** feedback can be **negative**

- Page view with very short dwell time
- Click on “next” button

Implicit (and Explicit) feedback distribution **impacted by UI/UX changes** and the **RecSys deployment** itself.

# Matrix Factorization for CF

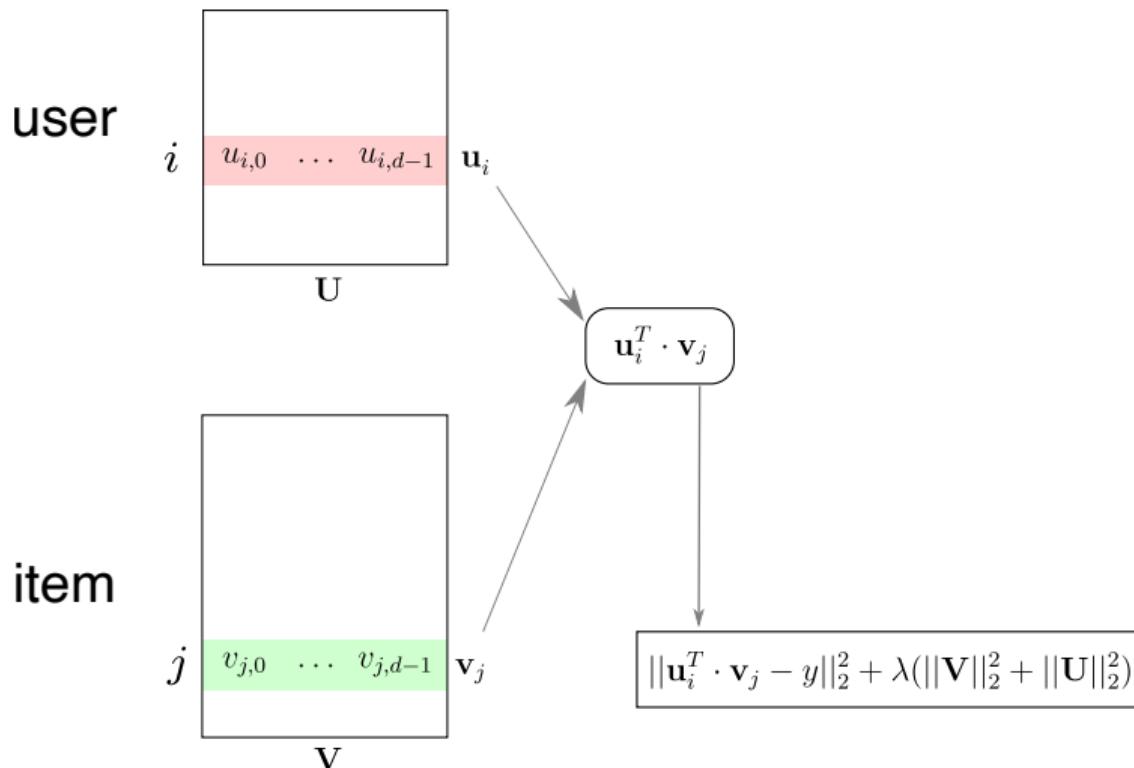


$$L(U, V) = \sum_{(i,j) \in D} \|r_{i,j} - \mathbf{u}_i^\top \cdot \mathbf{v}_j\|_2^2 + \lambda(\|U\|_2^2 + \|V\|_2^2)$$

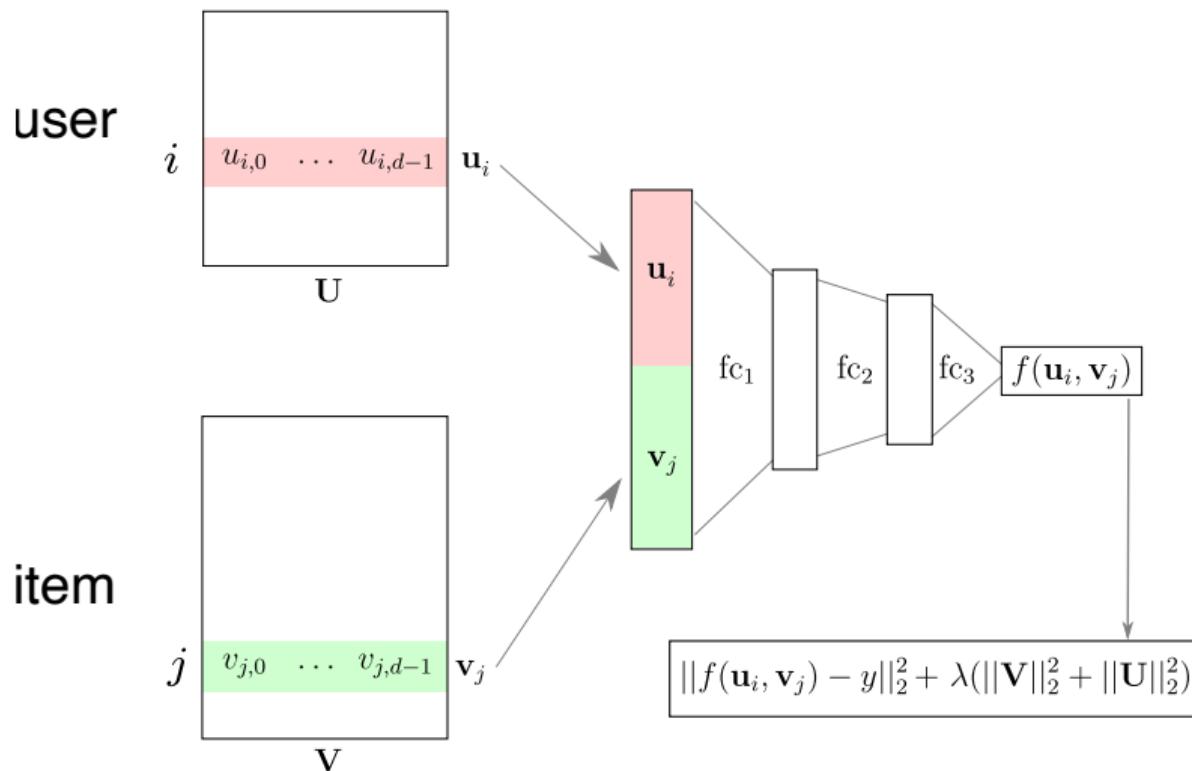
- Train  $U$  and  $V$  on observed ratings data  $r_{i,j}$
- Use  $U^\top V$  to find missing entries in sparse rating data matrix  $R$

# Architecture and Regularization

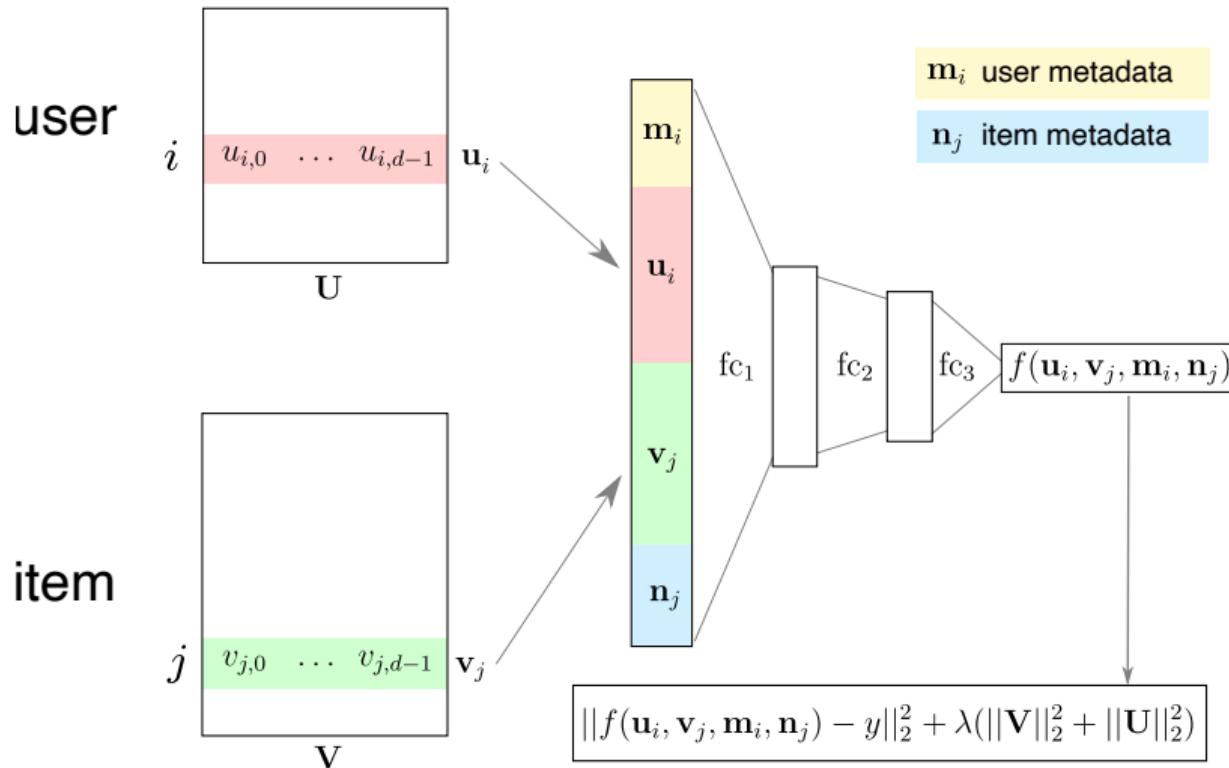
# RecSys with Explicit Feedback



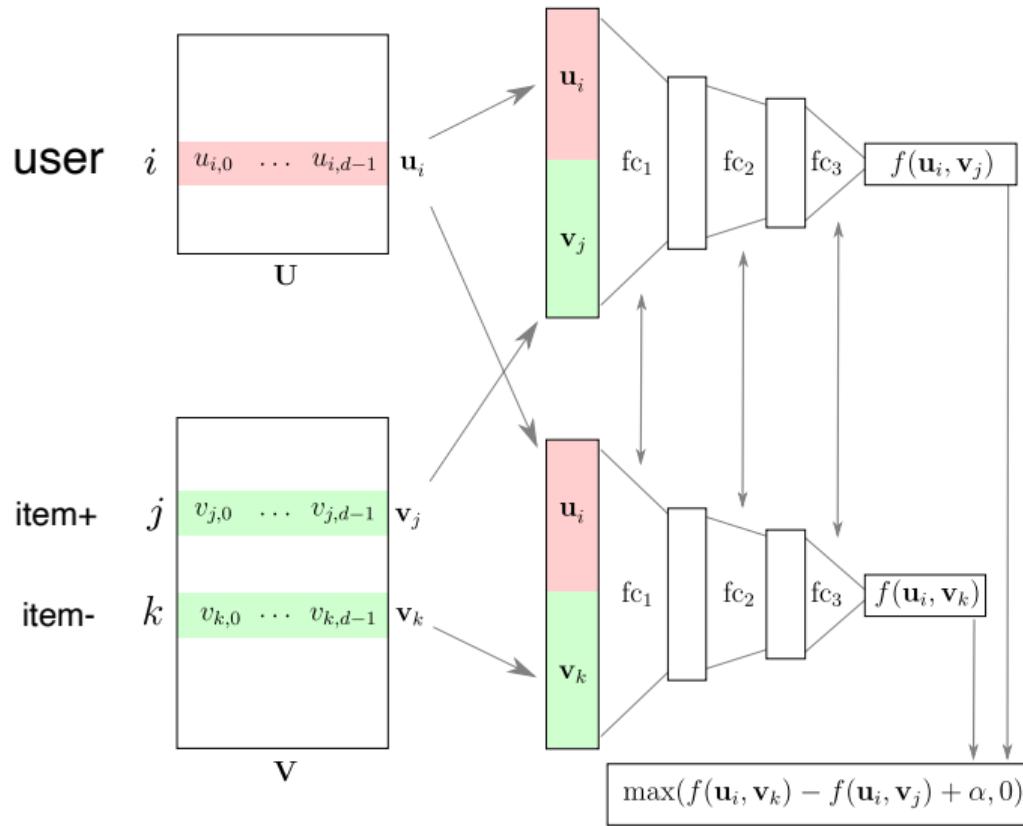
# Deep RecSys Architecture



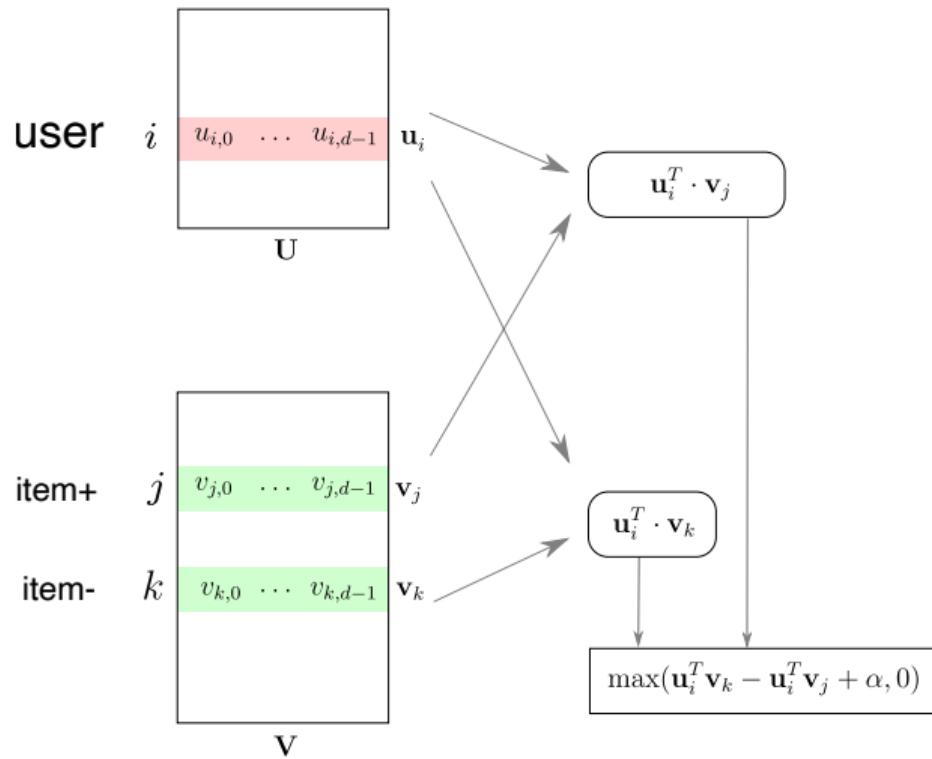
# Deep RecSys with metadata



# Implicit Feedback: Triplet loss

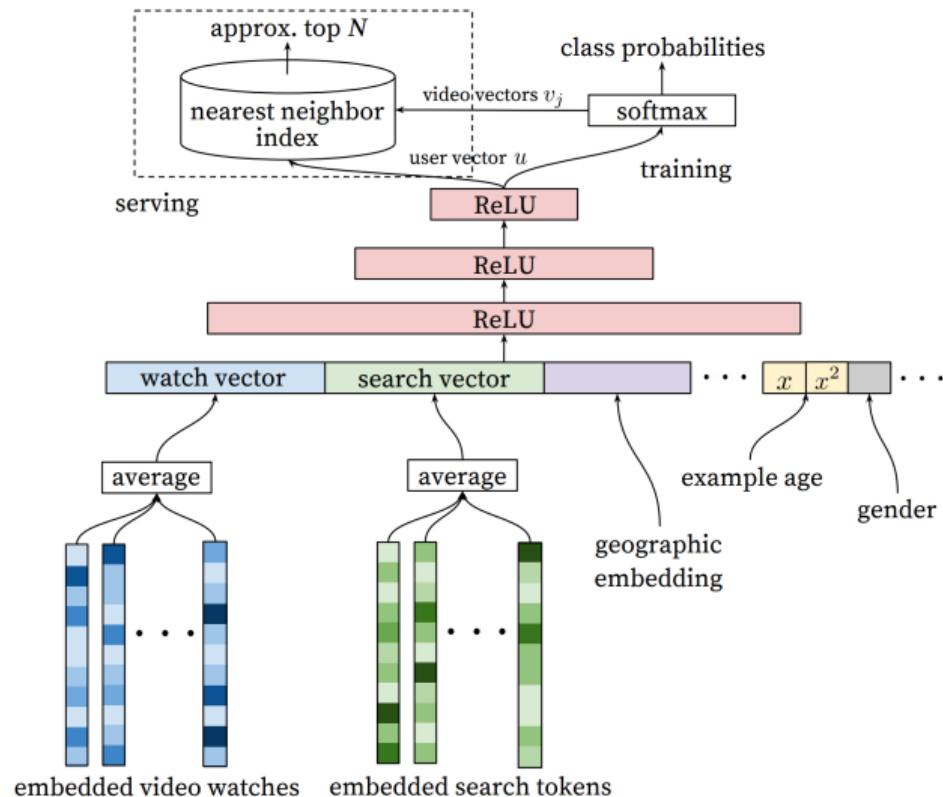


# Deep Triplet Networks



# Training a Triplet Model

- Gather a set of positive pairs user  $i$  and item  $j$
- While model has not converged:
  - Shuffle the set of pairs  $(i, j)$
  - For each  $(i, j)$ :
    - ▶ Sample item  $k$  uniformly at random
    - ▶ Call item  $k$  a negative item for user  $i$
    - ▶ Train model on triplet  $(i, j, k)$



Deep Neural Networks for YouTube Recommendations  
<https://research.google.com/pubs/pub45530.html>

# Ethical Considerations of Recommender Systems

# Ethical Considerations

## Amplification of existing discriminatory and unfair behaviors / bias

- Example: gender bias in ad clicks (fashion / jobs)
- Using the firstname as a predictive feature

## Amplification of the filter bubble and opinion polarization

- Personalization can amplify “people only follow people they agree with”
- Optimizing for “engagement” promotes content that causes strong emotional reaction (and turns normal users into *haters*?)
- RecSys can exploit weaknesses of some users, lead to addiction
- Addicted users clicks over-represented in future training data

# Call to action

## Designing Ethical Recommender Systems

- Wise modeling choices (e.g. use of “firstname” as feature)
- Conduct internal audits to detect fairness issues: SHAP, Integrated Gradients, fairlearn.org
- Learning representations that enforce fairness?

## Transparency

- Educate decision makers and the general public
- How to allow users to assess fairness by themselves?
- How to allow for independent audits while respecting the privacy of users?