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Single neuron operations

It receives input data point: 𝐱 = ⎡⎢
⎣

𝑥1
⋮

𝑥𝑛

⎤⎥
⎦

and computes the output:

𝑎⏟
activation

= 𝜎 ( 𝑧⏟
preactivation

) = 𝜎
⎛⎜⎜⎜⎜
⎝

𝑛
∑
𝑗=1

𝑥𝑗𝑤𝑗 + 𝑤0
⏟⏟⏟⏟⏟⏟⏟

𝑧

⎞⎟⎟⎟⎟
⎠

𝑧 = ∑𝑛
𝑗=1 𝑥𝑗𝑤𝑗 + 𝑤0 is called preactivation.

𝜎(𝑧) is the activation function.
𝐰 = [𝑤1, … , 𝑤𝑛]⊤ areweights (parameters).

𝑤0 is the bias parameters.
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Single neuron operations

𝑎 = 𝜎
⎛⎜⎜⎜⎜
⎝

𝑛
∑
𝑗=1

𝑥𝑗𝑤𝑗 + 𝑤0
⏟⏟⏟⏟⏟⏟⏟

𝑧

⎞⎟⎟⎟⎟
⎠

= 𝜎
⎛⎜⎜⎜⎜⎜
⎝

[ 𝑤1 … 𝑤𝑛 ]⏟⏟⏟⏟⏟⏟⏟
𝐰⊤

⎡⎢
⎣

𝑥1
⋮

𝑥𝑛

⎤⎥
⎦⏟

𝐱

+𝑤0

⎞⎟⎟⎟⎟⎟
⎠

= 𝜎 (𝐰⊤𝐱 + 𝑤0)
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Single layer operations

Consider 5 neurons that operates “in

parallel”.

It receives input 𝐱 and computes the

output 𝐚 x1

a1

a2

a3

a4

a5

w0,1

w0,2

w0,3

w0,4

w0,5

x2

x3
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Single layer operations

x1

a1

a2

a3

a4

a5

w0,1

w0,2

w0,3

w0,4

w0,5

x2

x3

w11

w12

w13

⎡
⎢
⎢
⎢
⎣

𝑎1
𝑎2
𝑎3
𝑎4
𝑎5

⎤
⎥
⎥
⎥
⎦

= 𝜎
⎛⎜⎜⎜⎜⎜⎜
⎝

⎡
⎢
⎢
⎢
⎣

𝑧1
𝑧2
𝑧3
𝑧4
𝑧5

⎤
⎥
⎥
⎥
⎦

⎞⎟⎟⎟⎟⎟⎟
⎠

= 𝜎
⎛⎜⎜⎜⎜⎜⎜
⎝

⎡
⎢
⎢
⎢
⎣

𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33
𝑤41 𝑤42 𝑤43
𝑤51 𝑤52 𝑤53

⎤
⎥
⎥
⎥
⎦

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

𝑤0,1
𝑤0,2
𝑤0,3
𝑤0,4
𝑤0,5

⎤
⎥
⎥
⎥
⎦

⎞⎟⎟⎟⎟⎟⎟
⎠
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Single layer operations

x1

a1

a2

a3

a4

a5

w0,1

w0,2

w0,3

w0,4

w0,5

x2

x3

w21

w22

w23

⎡
⎢
⎢
⎢
⎣

𝑎1
𝑎2
𝑎3
𝑎4
𝑎5

⎤
⎥
⎥
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⎢
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𝑧1
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⎤
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⎥
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⎞⎟⎟⎟⎟⎟⎟
⎠

= 𝜎
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⎝

⎡
⎢
⎢
⎢
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⎤
⎥
⎥
⎥
⎦
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⎣

𝑥1
𝑥2
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⎦

+
⎡
⎢
⎢
⎢
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Single layer operations

x1

a1

a2

a3

a4

a5

w0,1
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x2

x3

w31

w32
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⎦
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⎠
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Single layer operations

x1

a1

a2

a3

a4

a5

w0,1

w0,2

w0,3
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w0,5

x2
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Single layer operations

x1
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+
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⎢
⎢
⎢
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𝑤0,1
𝑤0,2
𝑤0,3
𝑤0,4
𝑤0,5

⎤
⎥
⎥
⎥
⎦

⎞⎟⎟⎟⎟⎟⎟
⎠
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Network with multiple layers
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Network with multiple layers
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Single layer operations

Consider a network of 𝐿 layers (one input layer and 𝐿 − 1 layers of neurons).

Each layer is composed by 𝑛(ℓ) neurons, ℓ ∈ {0, 1, … , 𝐿}.

The input vector for layer ℓ is:

𝐚(ℓ−1) = ⎡
⎢
⎣

𝑎(ℓ−1)
1

⋮
𝑎(ℓ−1)

𝑛(ℓ−1)

⎤
⎥
⎦

The output vector for layer ℓ is:

𝐚(ℓ) = ⎡
⎢
⎣

𝑎(ℓ)
1
⋮

𝑎(ℓ)
𝑛(ℓ)

⎤
⎥
⎦
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Single layer operations

⎡
⎢
⎣

𝑎(ℓ)
1
⋮

𝑎(ℓ)
𝑛(ℓ)

⎤
⎥
⎦⏟⏟⏟⏟⏟

𝐚(ℓ)

= 𝜎ℓ
⎛⎜⎜
⎝

⎡
⎢
⎣

𝑧(ℓ)
1
⋮

𝑧(ℓ)
𝑛(ℓ)

⎤
⎥
⎦

⎞⎟⎟
⎠

= 𝜎ℓ
⎛⎜⎜
⎝

⎡
⎢
⎣

𝐰(ℓ)⊤
1
⋮

𝐰(ℓ)⊤
𝑛(ℓ)

⎤
⎥
⎦

⎡
⎢
⎣

𝑎(ℓ−1)
1

⋮
𝑎(ℓ−1)

𝑛(ℓ−1)

⎤
⎥
⎦

+ ⎡
⎢
⎣

𝑤(ℓ)
0,1
⋮

𝑤(ℓ)
0,𝑛(ℓ)

⎤
⎥
⎦

⎞⎟⎟
⎠

= 𝜎 (𝐖(ℓ)𝐚(ℓ−1) + 𝐰(ℓ)
0 )

13/24



Feedforward network operations

Given the input vector 𝐱 and a network of 𝐿 layers:

Layer 1: 𝐚(1) = 𝜎1 (𝐖(1)𝐱 + 𝐰(1)
0 )

Layer 2: 𝐚(2) = 𝜎2 (𝐖(2)𝐚(1) + 𝐰(2)
0 )

⋮

Layer ℓ: 𝐚(ℓ) = 𝜎ℓ (𝐖(ℓ)𝐚(ℓ−1) + 𝐰(ℓ)
0 )

⋮

Layer 𝐿: 𝐲̂ = 𝐚(𝐿) = 𝜎𝐿 (𝐖(𝐿)𝐚(𝐿−1) + 𝐰(𝐿)
0 )
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Feedforward network operations

By defining 𝐚(0) = 𝐱:

Layer 1: 𝐚(1) = 𝜎1 (𝐖(1)𝐚(0) + 𝐰(1)
0 )

Layer 2: 𝐚(2) = 𝜎2 (𝐖(2)𝐚(1) + 𝐰(2)
0 )

⋮

Layer ℓ: 𝐚(ℓ) = 𝜎ℓ (𝐖(ℓ)𝐚(ℓ−1) + 𝐰(ℓ)
0 )

⋮

Layer 𝐿: 𝐚(𝐿) = 𝜎𝐿 (𝐖(𝐿)𝐚(𝐿−1) + 𝐰(𝐿)
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Learning the network parameters:

Backpropagation
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Training process

Two steps:

1. Backward Pass (Backpropagation of Error): Compute the derivatives of the error function

with respect to the weights by propagating errors backward through the network.

2. Weight Update: Adjust the weights using the calculated derivatives, typically by applying

an optimization method such as gradient descent.
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Training process

Training dataset: {(𝐱1, 𝐲1) , … , (𝐱𝐷, 𝐲𝐷)}

Loss function loss (guess, actual):

𝐽 (𝐖, 𝐖0) =
𝐷

∑
𝑑=1

loss (NN (𝐱𝑑; 𝐖, 𝐖0) , 𝐲𝑑) ,

where NN is the output of our neural network for a given input.

We can do (stochastic/batch) gradient descent, adjusting the weights 𝐖, 𝐖0 to minimize

𝐽.

18/24



Training process

Training dataset: {(𝐱1, 𝐲1) , … , (𝐱𝐷, 𝐲𝐷)}

Loss function loss (guess, actual):

𝐽 (𝐖, 𝐖0) =
𝐷

∑
𝑑=1

loss (NN (𝐱𝑑; 𝐖, 𝐖0) , 𝐲𝑑) ,

where NN is the output of our neural network for a given input.

We can do (stochastic/batch) gradient descent, adjusting the weights 𝐖, 𝐖0 to minimize

𝐽.

18/24



Training process

Training dataset: {(𝐱1, 𝐲1) , … , (𝐱𝐷, 𝐲𝐷)}

Loss function loss (guess, actual):

𝐽 (𝐖, 𝐖0) =
𝐷

∑
𝑑=1

loss (NN (𝐱𝑑; 𝐖, 𝐖0) , 𝐲𝑑) ,

where NN is the output of our neural network for a given input.

We can do (stochastic/batch) gradient descent, adjusting the weights 𝐖, 𝐖0 to minimize

𝐽.

18/24



Define 𝐲̂ = NN (𝐱; 𝐖, 𝐖0) the network response under the data point 𝐱.

Gradient descent rule:

𝐖(𝑡 + 1) = 𝐖(𝑡) − 𝜂∇𝐖loss(𝐲̂, 𝐲)

𝐖0(𝑡 + 1) = 𝐖0(𝑡) − 𝜂∇𝐖0
loss(𝐲̂, 𝐲)
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Recall:

𝐚(ℓ) = 𝜎ℓ (𝐳(ℓ)) 𝐳(ℓ) = 𝐖(ℓ)𝐚(ℓ−1) + 𝐰(ℓ)
0

The derivative of the loss w.r.t. 𝐖(𝐿) is:

𝜕 loss

𝜕𝐖(𝐿) = 𝜕 loss

𝜕𝐚(𝐿)⏟
depends on loss function

⋅ 𝜕𝐚(𝐿)

𝜕𝐳(𝐿)⏟
𝜎′

𝐿(𝐳(𝐿))

⋅ 𝜕𝐳(𝐿)

𝜕𝐖(𝐿)⏟
𝐚(𝐿−1)
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The derivative of the loss w.r.t. 𝐖(𝐿) is:

𝜕 loss

𝜕𝐖(𝐿) = 𝜕 loss

𝜕𝐚(𝐿)⏟
depends on loss function

⋅ 𝜕𝐚(𝐿)

𝜕𝐳(𝐿)⏟
𝜎′

𝐿(𝐳(𝐿))

⋅ 𝜕𝐳(𝐿)

𝜕𝐖(𝐿)⏟
𝐚(𝐿−1)
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𝜕 loss

𝜕𝐖(𝐿) = 𝜕 loss

𝜕𝐚(𝐿)
𝜕𝐚(𝐿)

𝜕𝐳(𝐿)
𝜕𝐳(𝐿)

𝜕𝐖(𝐿)

𝜕 loss

𝜕𝐖(𝐿−1) = 𝜕 loss

𝜕𝐚(𝐿)
𝜕𝐚(𝐿)

𝜕𝐳(𝐿)
𝜕𝐳(𝐿)

𝜕𝐚(𝐿−1)
𝜕𝐚(𝐿−1)

𝜕𝐳(𝐿−1)
𝜕𝐳(𝐿−1)

𝜕𝐖(𝐿−1)

⋮

𝜕 loss

𝜕𝐖(𝐿) = 𝜕 loss

𝜕𝐚(𝐿) 𝜎′
𝐿(𝐳(𝐿))𝐚(𝐿−1)

𝜕 loss

𝜕𝐖(𝐿−1) = 𝜕 loss

𝜕𝐚(𝐿) 𝜎′
𝐿(𝐳(𝐿))𝐖(𝐿)𝜎′

𝐿−1(𝐳(𝐿−1))𝐚(𝐿−2)

⋮
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𝜕 loss

𝜕𝐖(𝐿) = 𝜕 loss

𝜕𝐚(𝐿)
𝜕𝐚(𝐿)

𝜕𝐳(𝐿)
𝜕𝐳(𝐿)

𝜕𝐖(𝐿)

𝜕 loss

𝜕𝐖(𝐿−1) = 𝜕 loss

𝜕𝐚(𝐿)
𝜕𝐚(𝐿)

𝜕𝐳(𝐿)
𝜕𝐳(𝐿)

𝜕𝐚(𝐿−1)
𝜕𝐚(𝐿−1)

𝜕𝐳(𝐿−1)
𝜕𝐳(𝐿−1)

𝜕𝐖(𝐿−1)

⋮

𝜕 loss

𝜕𝐖(𝐿) = 𝜕 loss

𝜕𝐚(𝐿) 𝜎′
𝐿(𝐳(𝐿))𝐚(𝐿−1)

𝜕 loss

𝜕𝐖(𝐿−1) = 𝜕 loss

𝜕𝐚(𝐿) 𝜎′
𝐿(𝐳(𝐿))𝐖(𝐿)𝜎′

𝐿−1(𝐳(𝐿−1))𝐚(𝐿−2)

⋮
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𝜕 loss

𝜕𝐖(𝐿) = 𝜕 loss

𝜕𝐚(𝐿)
𝜕𝐚(𝐿)

𝜕𝐳(𝐿)
𝜕𝐳(𝐿)

𝜕𝐖(𝐿)

𝜕 loss

𝜕𝐖(𝐿−1) = 𝜕 loss

𝜕𝐚(𝐿)
𝜕𝐚(𝐿)

𝜕𝐳(𝐿)
𝜕𝐳(𝐿)

𝜕𝐚(𝐿−1)
𝜕𝐚(𝐿−1)

𝜕𝐳(𝐿−1)
𝜕𝐳(𝐿−1)

𝜕𝐖(𝐿−1)

⋮

𝜕 loss

𝜕𝐖(𝐿) = 𝜕 loss

𝜕𝐚(𝐿) 𝜎′
𝐿(𝐳(𝐿))𝐚(𝐿−1)

𝜕 loss

𝜕𝐖(𝐿−1) = 𝜕 loss

𝜕𝐚(𝐿) 𝜎′
𝐿(𝐳(𝐿))𝐖(𝐿)𝜎′

𝐿−1(𝐳(𝐿−1))𝐚(𝐿−2)

⋮

21/24



The general case

𝜕 loss

𝜕𝐖(ℓ) = 𝜕 loss

𝜕𝐚(𝐿)
𝜕𝐚(𝐿)

𝜕𝐳(𝐿)
𝜕𝐳(𝐿)

𝜕𝐚(𝐿−1)
𝜕𝐚(𝐿−1)

𝜕𝐳(𝐿−1)
𝜕𝐳(𝐿−1)

𝜕𝐚(𝐿−2)
𝜕𝐚(𝐿−2)

𝜕𝐳(𝐿−2)

… 𝜕𝐳(ℓ+1)

𝜕𝐚(ℓ)
𝜕𝐚(ℓ)

𝜕𝐳(ℓ)
𝜕𝐳(ℓ)

𝜕𝐖(ℓ)

= 𝜕 loss

𝜕𝐚(𝐿) 𝜎′
𝐿𝐖(𝐿)𝜎′

𝐿−1𝐖(𝐿−1)𝜎′
𝐿−2𝐖(𝐿−2)

… 𝐖(ℓ+1)𝜎′
ℓ𝐚(ℓ−1)

= 𝜕 loss

𝜕𝐳(ℓ) 𝐚(ℓ−1)
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Error backpropagation
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Backpropagation

1: for 𝑙 = 1 to 𝐿 do

2: 𝑤(𝑙)
𝑖𝑗 ∼ Gaussian (0, 1/𝑚𝑙) ; 𝑤(𝑙)

0𝑗 ∼ Gaussian(0, 1)
3: end for

4: for 𝑡 = 1 to 𝑇 do

5: 𝑖 = random sample from {1, … , 𝑛} , then define a0 = x(𝑖)

6: for 𝑙 = 1 to 𝐿 do

7: z(𝑙) = W𝑙⊤a(𝑙−1) + W(𝑙)
0 ; a(𝑙) = 𝜎(𝑙) (z(𝑙))

8: end for

9: loss = Loss (a(𝐿), y(i))
10: for 𝑙 = 𝐿 to 1 do

11: 𝜕loss/𝜕a(𝑙) = if 𝑙 < 𝐿 then 𝜕loss/𝜕z(𝑙+1) ⋅ 𝜕z(𝑙+1)/𝜕a(𝑙) else 𝜕loss/𝜕a(𝐿)

12: 𝜕loss/𝜕z(𝑙) = 𝜕loss/𝜕a(𝑙) ⋅ 𝜕a(𝑙)/𝜕z(𝑙)

13: 𝜕loss/𝜕W(𝑙) = 𝜕loss/𝜕z(𝑙)𝜕z(𝑙)/𝜕W(𝑙) , 𝜕loss/𝜕W(𝑙)
0 = 𝜕loss/𝜕z(𝑙)𝜕z(𝑙)/𝜕W(𝑙)

0

14: W(𝑙) = W(𝑙) − 𝜂(𝑡)𝜕loss/𝜕W(𝑙) , W(𝑙)
0 = W(𝑙)

0 − 𝜂(𝑡)𝜕loss/𝜕W(𝑙)
0

15: end for

16: end for

17: return W, W024/24
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