Feedforward Artificial Neural Networks (FANN)
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Single neuron operations

Ly
e It receives input data point: X =
'(I;n
and computes the output:

o/
activation preactivation

z

° z= Z;;l x;w; + wy is called preactivation.

o(z) is the activation Function.

w = [wy, ..., w,]  are weights (parameters).

wy is the bias parameters.
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Single layer operations
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Consider 5 neurons that operates “in a;
parallel”. ‘
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Single layer operations
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Single layer operations
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Single layer operations
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Single layer operations
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Single layer operations
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Network with multiple layers
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Network with multiple layers

- a(O) .i *. > a(L) )

Layer 1 Layer L

a (W(l)a(o) + ng)) a0 g (w(z)aa) + W(()2>) S a® o (W(L)a(L—l) + wﬁ”) S a®

11/24



Single layer operations
Consider a network of L layers (one input layer and L — 1 layers of neurons).
Each layer is composed by 1Y) neurons, £ € {0,1,...,L}.

The input vector for layer / is:

a(le—1)
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The output vector for layer £ is:
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Single layer operations
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Feedforward network operations

Given the input vector x and a network of L layers:

Layer1: all) =0, (W(l)x + Wél))
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Feedforward network operations

Given the input vector x and a network of L layers:

Layer1: all) =0, (W(l)x + Wél))

Layer2: al? =g, (W(Q)a(1> + w(02>)
Layer: al¥) =g, (W(@a(g*1> + w((f)>

Layer .: y=al)l =o, (W(L)a(L_l) + WE)L)>
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Feedforward network operations

By defining a0 =x:
Layer1: all) =0, (W(l)a(0> + wél))

Layer2: al? =g, (W(Q)a(1> + w(02>)
Layer: al¥) =g, (W(@a(g*1> + w((f))

Layer L: all) =o¢; (W<L>a<L_1) + WE)L)>



Learning the network parameters:
Backpropagation
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Training process

Two steps:

1. Backward Pass (Backpropagation of Error): Compute the derivatives of the error function
with respect to the weights by propagating errors backward through the network.

2. Weight Update: Adjust the weights using the calculated derivatives, typically by applying
an optimization method such as gradient descent.



Training process
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Training process

e Training dataset: {(x1,¥1),-, (Xp,¥p)}

e Loss function loss (guess, actual):

D
J(W, W) = Z loss (NN (x4; W, W), y,),
d=1

where NN is the output of our neural network for a given input.

e We can do (stochastic/batch) gradient descent, adjusting the weights W, W ; to minimize
J.
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Definey = NN (x; W, W) the network response under the data point X.
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Definey = NN (x; W, W) the network response under the data point X.

Gradient descent rule:

W(t+1)=W(t) —nVwyloss(y,y)
Wy (t+1) = W(t) =V, loss(y,y)
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Recall:
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Recall:

The derivative of the loss w.r.t. WL s:

Oloss O loss dall)  9zL)
OW(L) dalL) "9z WD)

N
depends on loss function g’L (Z(L)) alL-1)
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dloss  Oloss fa'l) 9zl
OW(IL) — 9all) 9z(L) gW(L)
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dloss  Oloss fa'l) 9zl
OW(IL) — 9all) 9z(L) gW(L)

Dloss  dloss dall) 9zl pall—1) §zL-1)
OW(L=1) — 9a(l) 9z(L) galL-1) §z(L-1) W (L—1)

0 loss Jloss B
WD = 5all) UL(z<L))a(L 1)
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The general case
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Error backpropagation
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Backpropagation

1: for[ = 1to L do
2 wi? ~ Gaussian (0,1/m!) ; w(()l; ~ Gaussian(0, 1)
3: end for
4: fort = 1to7T'do
: ¢ =random sample from {1, ..., n} , then define a
for/ = 1to L do

5 0
6:
7: Z<l) = WlTa(lfl) + W(()l> ; a(l) = g(l) (Z(l)>
8-
9

— <

end for
. loss = Loss (a<L),y(i)>
10 forl = Lto1do
11: dloss/0al) =if | < L then dloss/0z'"*1) - 9z(+1) /9al) else Aloss/Oa' )
12: Dloss/9z'Y) = Oloss/0a'V) - 9all) /9zV)
13: Aloss/ W ) = Bloss/9zV) 9z Jow 1) | 8loss/<9WE)l) = aloss/az(l)az(”/awg)
14: WO = WU — p(t)dloss/ WD | Wél) = Wg) — n(t)@loss/@W[()l)
15:  end for
16: end For
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