

Linear models for regression and classification

Dr. Alejandro Veloz

Supervised learning

Problem formulation

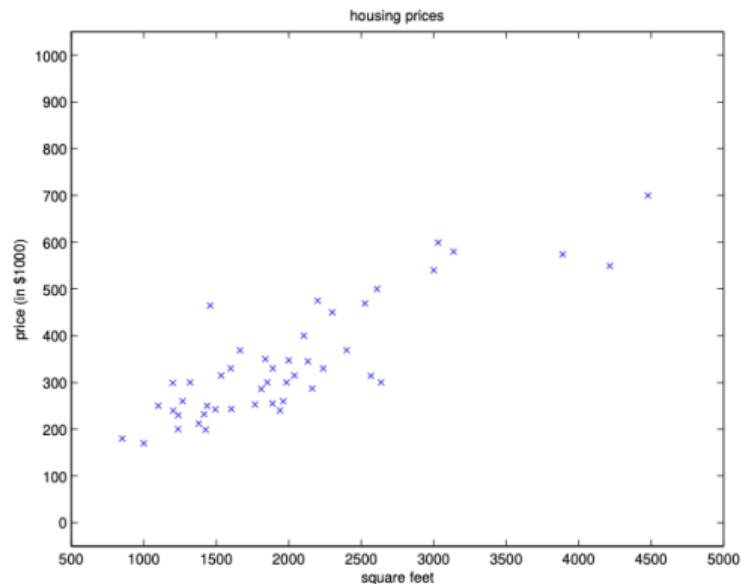
A *hypothesis* h is employed as a model for solving the problem, in that it maps inputs x to outputs y ,

$$x \rightarrow \boxed{h} \rightarrow y$$

Supervised learning

Suppose we have a dataset giving the living areas and prices of houses:

Living area (feet ²)	Price (1000\$ s)
2104	400
1600	330
2400	369
1416	232
3000	540
⋮	⋮



Supervised learning - notation

- $x^{(i)}$ to denote the “input” variables (living area in this example), also called **input features**.

Supervised learning - notation

- $x^{(i)}$ to denote the “input” variables (living area in this example), also called **input features**.
- $y^{(i)}$ to denote the “output” or **target variable** that we are trying to predict (price).

Supervised learning - notation

- $x^{(i)}$ to denote the “input” variables (living area in this example), also called **input features**.
- $y^{(i)}$ to denote the “output” or **target variable** that we are trying to predict (price).
- A pair $(x^{(i)}, y^{(i)})$ is called a **training example**.

Supervised learning - notation

- $x^{(i)}$ to denote the “input” variables (living area in this example), also called **input features**.
- $y^{(i)}$ to denote the “output” or **target variable** that we are trying to predict (price).
- A pair $(x^{(i)}, y^{(i)})$ is called a **training example**.
- The **training set** is the list of n training examples

$$\{(x^{(i)}, y^{(i)}) ; i = 1, \dots, n\}.$$

Supervised learning - notation

- $x^{(i)}$ to denote the “input” variables (living area in this example), also called **input features**.
- $y^{(i)}$ to denote the “output” or **target variable** that we are trying to predict (price).
- A pair $(x^{(i)}, y^{(i)})$ is called a **training example**.
- The **training set** is the list of n training examples

$$\{(x^{(i)}, y^{(i)}) ; i = 1, \dots, n\}.$$

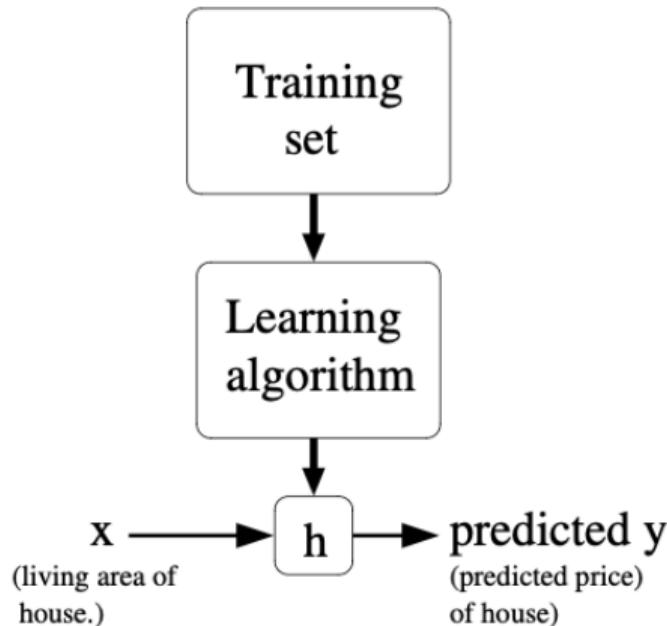
- We will also use \mathcal{X} to denote the space of input values, and \mathcal{Y} the space of output values. In this example, $\mathcal{X} = \mathcal{Y} = \mathbb{R}$.

Supervised learning

To describe the supervised learning problem slightly more formally, our goal is:

Given a training set, to learn a function $h : \mathcal{X} \mapsto \mathcal{Y}$ so that $h(x)$ is a “good” predictor for the corresponding value of y .

- This function h is called **hypothesis**.
- **Regression problem.** The target variable is continuous.
- **Classification problem.** The target variable can take on only a small number of discrete values.



Linear Models for Regression

Regression Basics

Regression Goal

Predict the value of *one or more* continuous target variables y given a D -dimensional vector \mathbf{x} of input variables.

Linear Regression

Living area (feet ²)	#bedrooms	Price (1000\$ s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
⋮	⋮	⋮

- We have features $\mathbf{x}^{(i)}$ in \mathbb{R}^2 .
- We define $x_1^{(i)}$ as the living area of the i -th house in the training set, and $x_2^{(i)}$ is its number of bedrooms.

Linear Regression

- We must decide how to represent functions/hypotheses h .
- We decide to approximate y as a linear function of x :

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

- θ_i 's are the parameters (also called weights) parameterizing the space of linear functions mapping from \mathcal{X} to \mathcal{Y} .
- To simplify our notation, we also introduce the convention $x_0 = 1$ (this is the intercept term), such that:

$$h(\mathbf{x}) = \sum_{i=0}^d \theta_i x_i = \boldsymbol{\theta}^\top \mathbf{x}$$

Cost function

Given a training set, how do we learn the parameters θ ?

Cost function

Given a training set, how do we learn the parameters θ ?

- One reasonable method seems to be to make $h(\mathbf{x})$ close to y , at least for the training examples we have.

Cost function

Given a training set, how do we learn the parameters θ ?

- One reasonable method seems to be to make $h(\mathbf{x})$ close to y , at least for the training examples we have.
- To formalize this, we will define a function that measures, for each value of the θ 's, how close the $h(\mathbf{x}^{(i)})$'s are to the corresponding $y^{(i)}$'s.

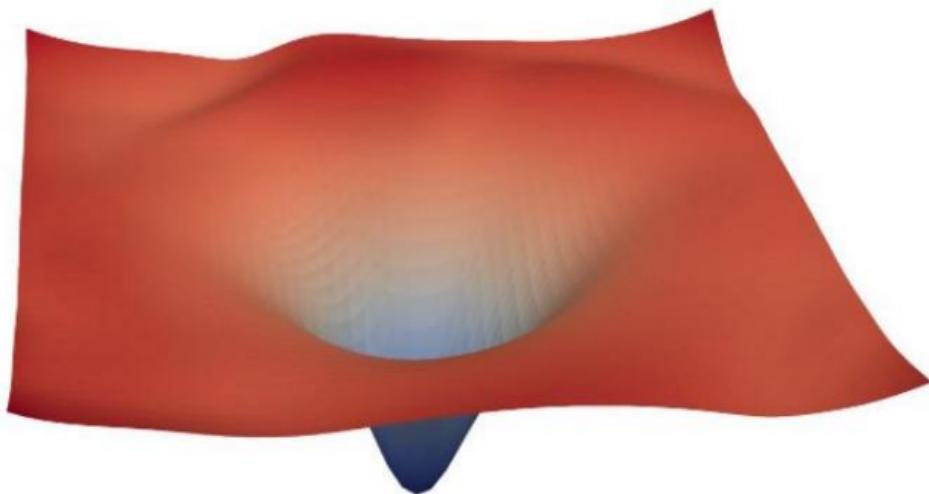
Cost function

Given a training set, how do we learn the parameters θ ?

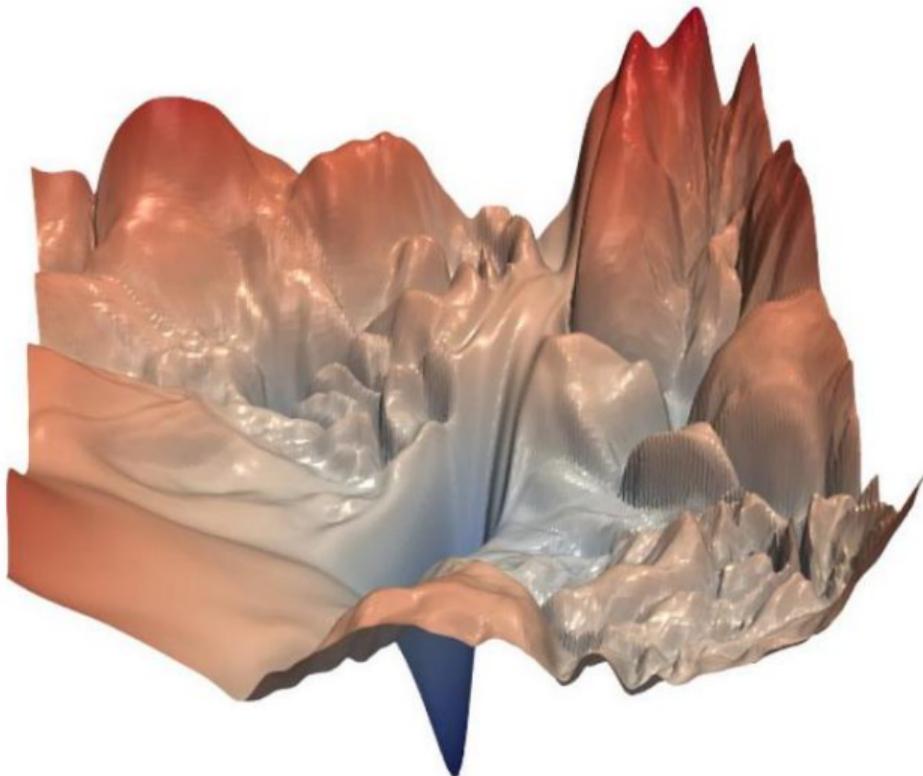
- One reasonable method seems to be to make $h(\mathbf{x})$ close to y , at least for the training examples we have.
- To formalize this, we will define a function that measures, for each value of the θ 's, how close the $h(\mathbf{x}^{(i)})$'s are to the corresponding $y^{(i)}$'s.
- We define the **cost function**:

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^n (h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)})^2$$

Error surface



Error surface



Learning algorithm

Random-Regression

Require: Data \mathcal{D} , integer k

- 1: **for** $i = 1$ **to** k **do**
- 2: Randomly generate hypothesis $\theta(i)$
- 3: **end for**
- 4: Let $i = \arg \min_j J(\theta(j); \mathcal{D})$
- 5: **return** $\theta(i)$

How do you think increasing the number of guesses k will change the training error of the resulting hypothesis?

Learning algorithm: sequential learning

- We want to choose θ so as to minimize $J(\theta)$.

Learning algorithm: sequential learning

- We want to choose θ so as to minimize $J(\theta)$.
- **Search algorithm (gradient descent):** start with some “initial guess” for θ , and repeatedly change θ to make $J(\theta)$ smaller, until hopefully we converge to a value of θ that minimizes $J(\theta)$.

Learning algorithm: sequential learning

- We want to choose θ so as to minimize $J(\theta)$.
- **Search algorithm (gradient descent):** start with some “initial guess” for θ , and repeatedly change θ to make $J(\theta)$ smaller, until hopefully we converge to a value of θ that minimizes $J(\theta)$.
- The update step is:

$$\theta^{(\tau+1)} = \theta^{(\tau)} - \eta \nabla E_n$$

where τ denotes the iteration number, and η is a learning rate parameter.

- The value of η needs to be chosen with care to ensure that the algorithm converges (Bishop and Nabney, 2008).

Learning algorithm: sequential learning

- For the model:

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n ,$$

the update step is:

$$\theta_j := \theta_j - \eta \frac{\partial}{\partial \theta_j} J(\theta).$$

- This update is simultaneously performed for all values of $j = 0, \dots, d$.
- η is called the learning rate.

Learning algorithm: sequential learning

- For the linear regression model, the update step can be:

- Batch gradient descent

$$\theta_j := \theta_j + \eta \sum_{i=1}^n (y^{(i)} - h_{\theta}(\mathbf{x}^{(i)})) x_j^{(i)}, \quad (\text{for every } j)$$

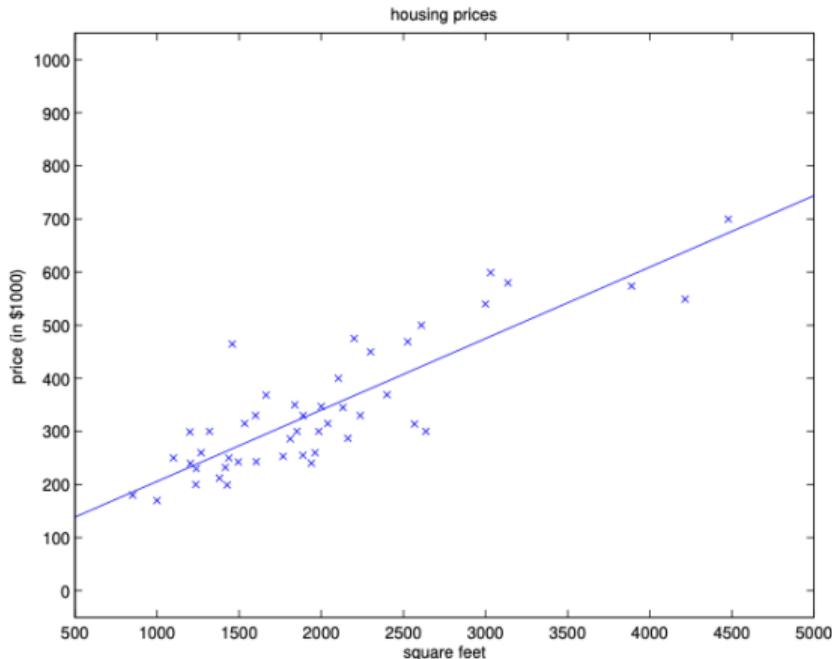
- Stochastic or incremental gradient descent

$$\theta_j := \theta_j + \eta (y^{(i)} - h_{\theta}(\mathbf{x}^{(i)})) x_j^{(i)}, \quad (\text{for every } i, j)$$

or

$$\theta := \theta + \eta (y^{(i)} - h_{\theta}(\mathbf{x}^{(i)})) \mathbf{x}^{(i)}, \quad (\text{for every } i)$$

Regression curve



Probabilistic interpretation

Consider the model:

$$y^{(i)} = \boldsymbol{\theta}^\top \mathbf{x}^{(i)} + \epsilon^{(i)}$$

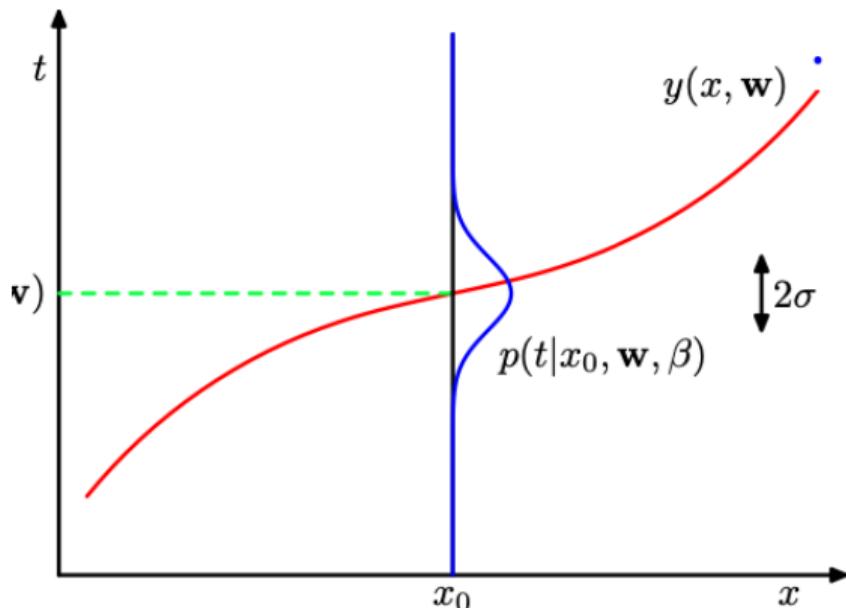
where $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$. I.e., the density of $\epsilon^{(i)}$ is given by:

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right)$$

This implies that

$$p(y^{(i)} \mid \mathbf{x}^{(i)}; \boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \boldsymbol{\theta}^\top \mathbf{x}^{(i)})^2}{2\sigma^2}\right)$$

Probabilistic interpretation



Probabilistic interpretation

The **Likelihood function** is given by:

$$L(\boldsymbol{\theta}) = L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = p(\mathbf{y} \mid \mathbf{X}; \boldsymbol{\theta})$$

Probabilistic interpretation

The **Likelihood function** is given by:

$$L(\boldsymbol{\theta}) = L(\boldsymbol{\theta}; X, \mathbf{y}) = p(\mathbf{y} \mid X; \boldsymbol{\theta})$$

$$L(\boldsymbol{\theta}) = \prod_{i=1}^n p(y^{(i)} \mid \mathbf{x}^{(i)}; \boldsymbol{\theta})$$

Probabilistic interpretation

The **Likelihood function** is given by:

$$\begin{aligned} L(\boldsymbol{\theta}) &= L(\boldsymbol{\theta}; X, \mathbf{y}) = p(\mathbf{y} \mid X; \boldsymbol{\theta}) \\ L(\boldsymbol{\theta}) &= \prod_{i=1}^n p(y^{(i)} \mid \mathbf{x}^{(i)}; \boldsymbol{\theta}) \\ &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \boldsymbol{\theta}^\top \mathbf{x}^{(i)})^2}{2\sigma^2}\right) \end{aligned}$$

Probabilistic interpretation

The **log Likelihood function** is given by:

$$\begin{aligned}\ell(\boldsymbol{\theta}) &= \log L(\boldsymbol{\theta}) \\ &= \log \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \boldsymbol{\theta}^\top \mathbf{x}^{(i)})^2}{2\sigma^2}\right) \\ &= \sum_{i=1}^n \log \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \boldsymbol{\theta}^\top \mathbf{x}^{(i)})^2}{2\sigma^2}\right) \\ &= n \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^n (y^{(i)} - \boldsymbol{\theta}^\top \mathbf{x}^{(i)})^2\end{aligned}$$

Probabilistic interpretation

The solution that minimizes $\ell(\theta)$ is:

$$\theta_{\text{ML}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$$

- Note that this is equivalent to obtain the parameters by minimizing:

$$\frac{1}{2} \sum_{i=1}^n (y^{(i)} - \theta^\top \mathbf{x}^{(i)})^2$$

- Note that we arrive to a solution regardless the value of σ^2 . This fact is used to define an **exponential family and generalized linear models**.

Linear Basis Function Models

Linear Regression Models

Linear functions of the adjustable parameters:

$$y(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \theta_1 x_1 + \dots + \theta_D x_D$$

Linear Basis Function Models

Linear Regression Models

Linear functions of the adjustable parameters:

$$y(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \theta_1 x_1 + \dots + \theta_D x_D$$

Linear Basis Function Models

Can be extended to include nonlinear functions of the input variables using basis functions:

$$y(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \sum_{j=1}^{M-1} \theta_j \phi_j(\mathbf{x}) = \sum_{j=0}^M \theta_j \phi_j(\mathbf{x}) = \boldsymbol{\theta}^\top \boldsymbol{\phi}(\mathbf{x})$$

Linear Basis Function Models

Linear Regression Models

Linear functions of the adjustable parameters:

$$y(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \theta_1 x_1 + \dots + \theta_D x_D$$

Linear Basis Function Models

Can be extended to include nonlinear functions of the input variables using basis functions:

$$y(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \sum_{j=1}^{M-1} \theta_j \phi_j(\mathbf{x}) = \sum_{j=0}^M \theta_j \phi_j(\mathbf{x}) = \boldsymbol{\theta}^T \boldsymbol{\phi}(\mathbf{x})$$

Basis Functions

Examples include polynomials, Gaussians, and sigmoidals.

Basis Functions

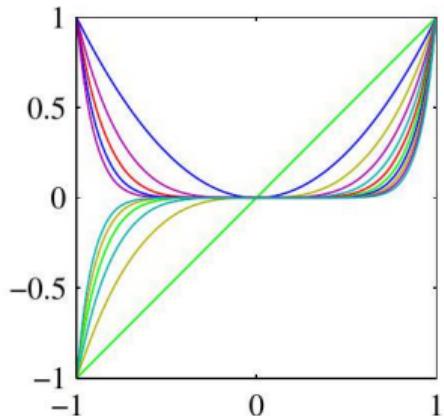
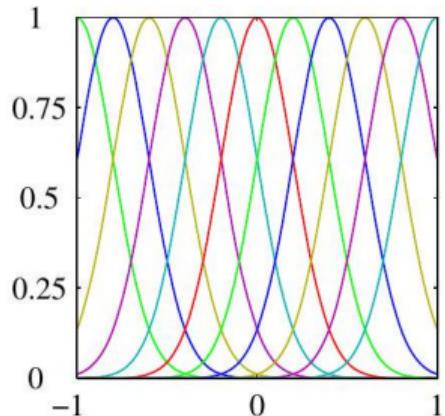
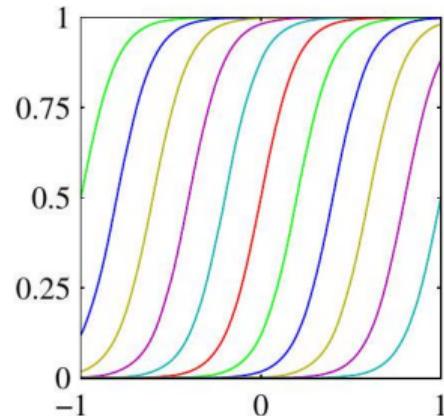
Examples of Basis Functions

$$\phi_j(x) = x^j \quad (\text{Polynomial})$$

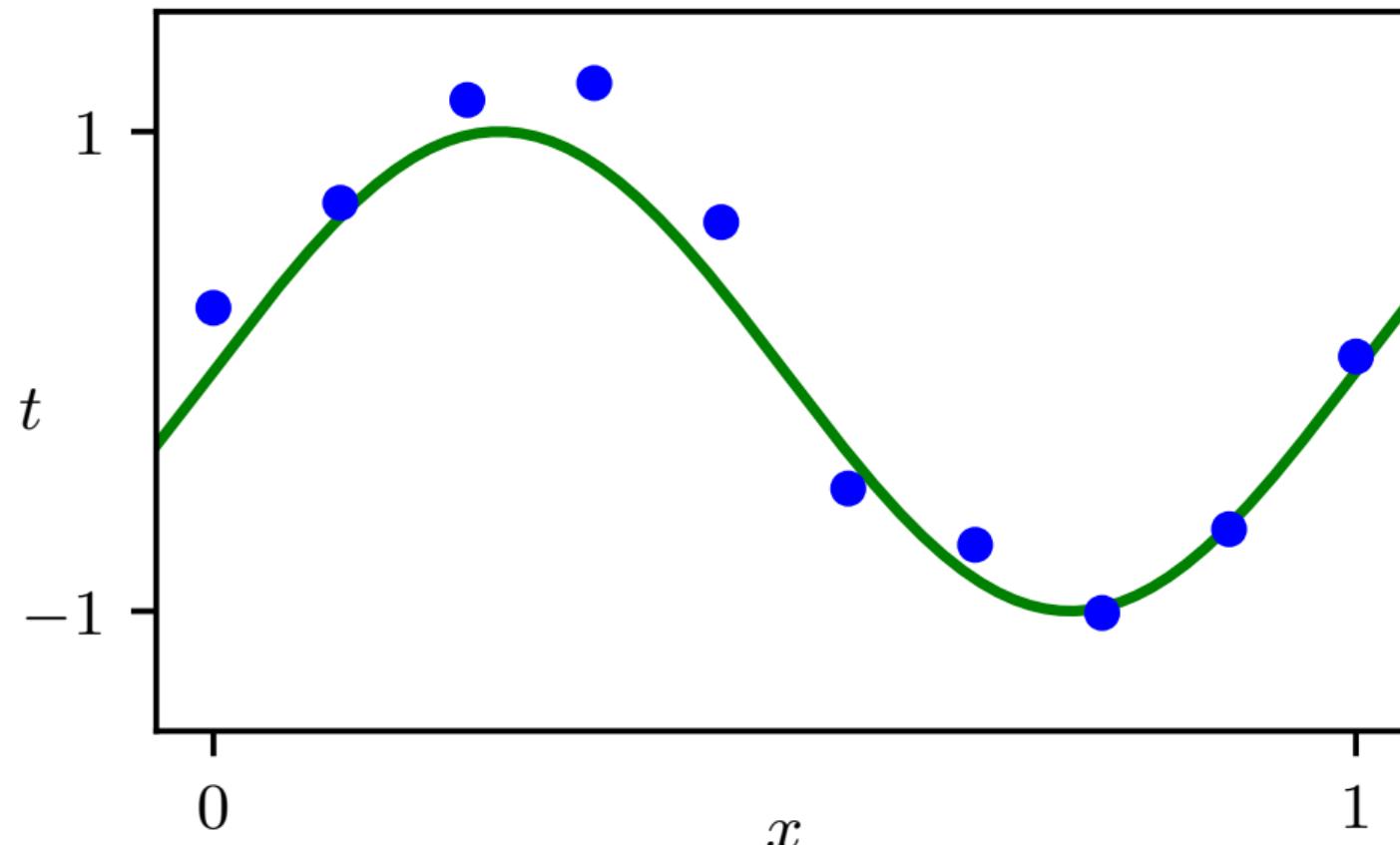
$$\phi_j(x) = \exp \left\{ -\frac{(x - \mu_j)^2}{2s^2} \right\} \quad (\text{Gaussian})$$

$$\phi_j(x) = \sigma \left(\frac{x - \mu_j}{s} \right) \quad (\text{Sigmoidal})$$

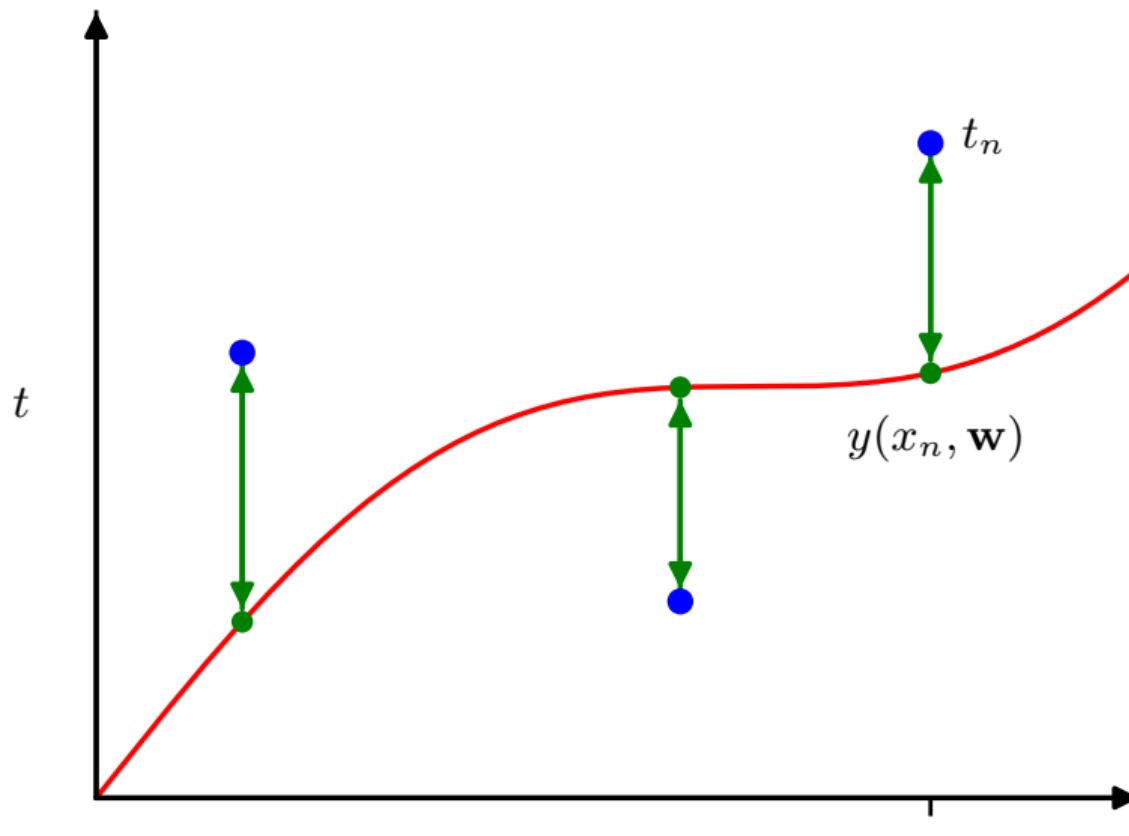
Basis Functions



Example polynomial regression (Bishop 2006)



Example polynomial regression (Bishop 2006)



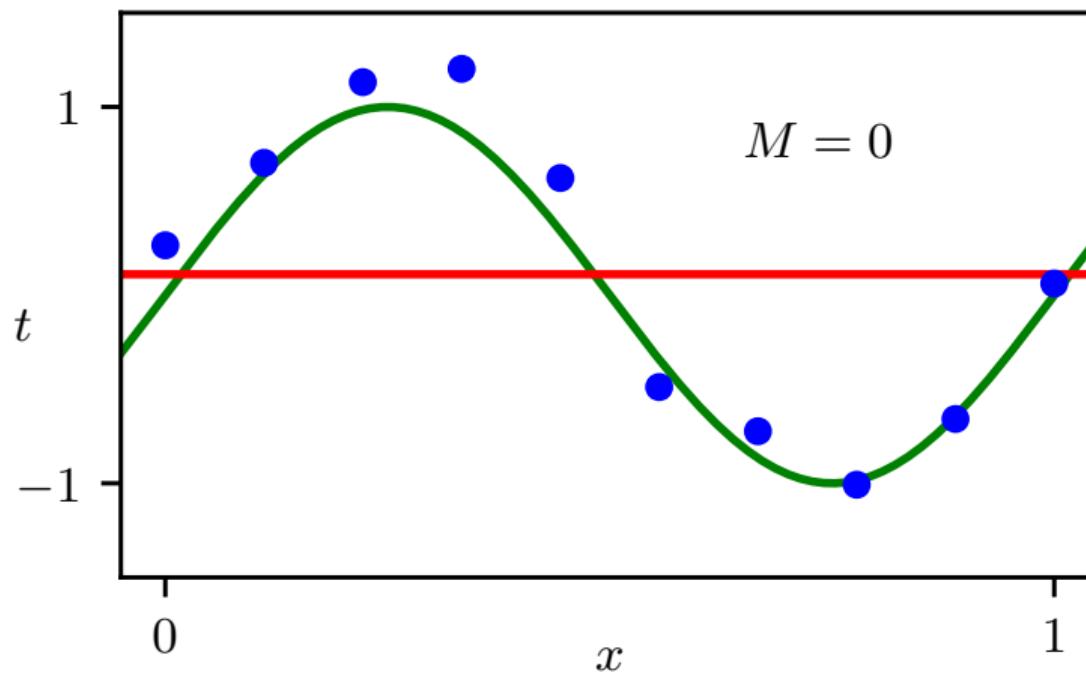
Example polynomial regression (Bishop 2006)

$$h(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

$$E(w) = \sum_{n=1}^N (h(x_n, w) - t_n)^2$$

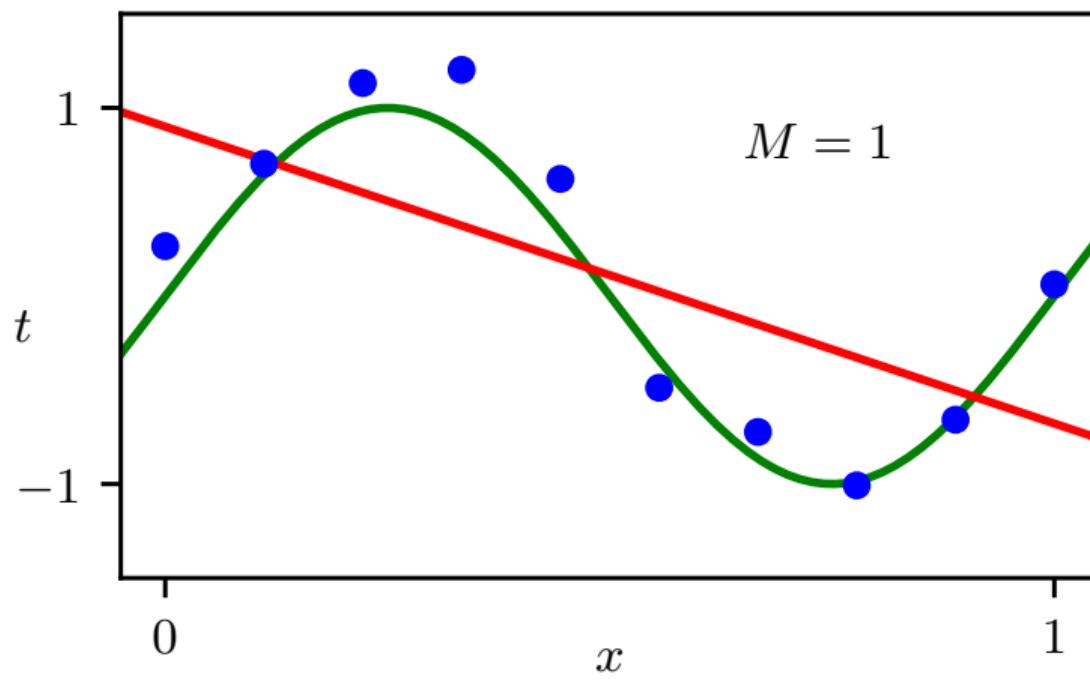
Example polynomial regression (Bishop 2006)

$$h(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$



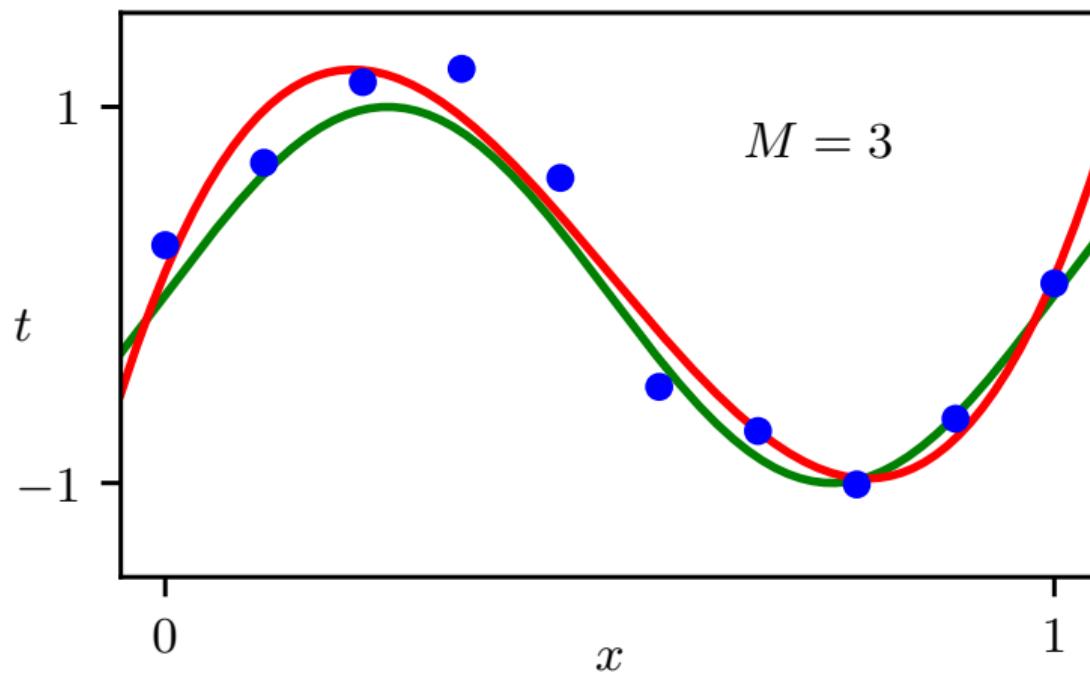
Example polynomial regression (Bishop 2006)

$$h(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$



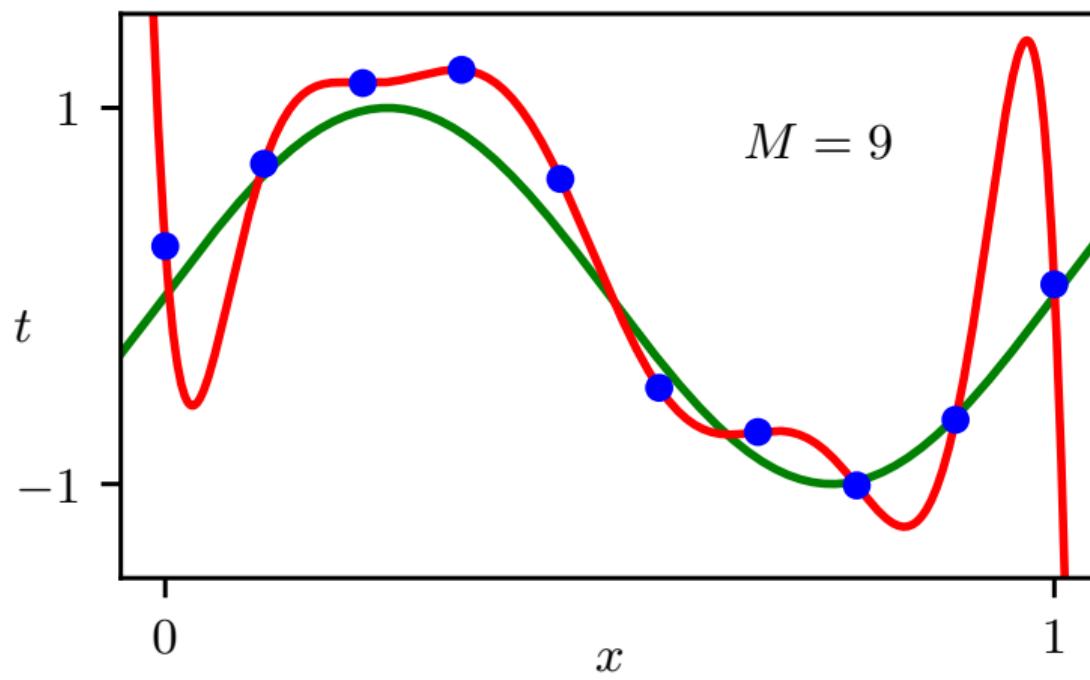
Example polynomial regression (Bishop 2006)

$$h(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

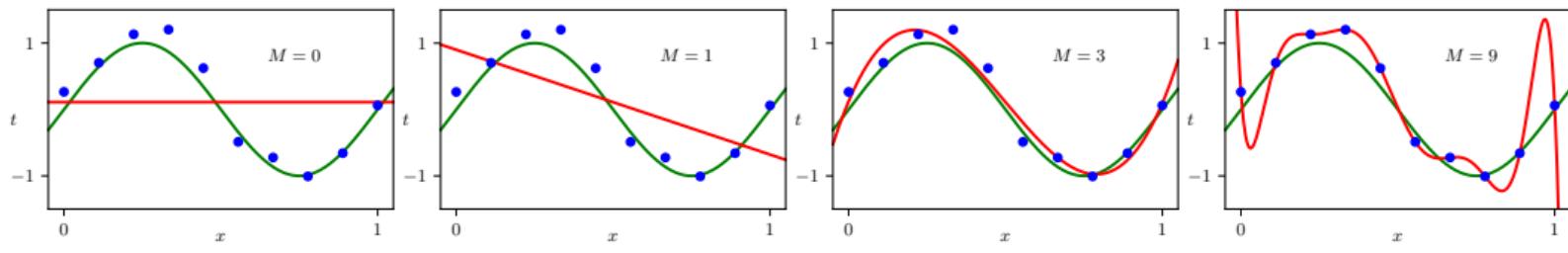
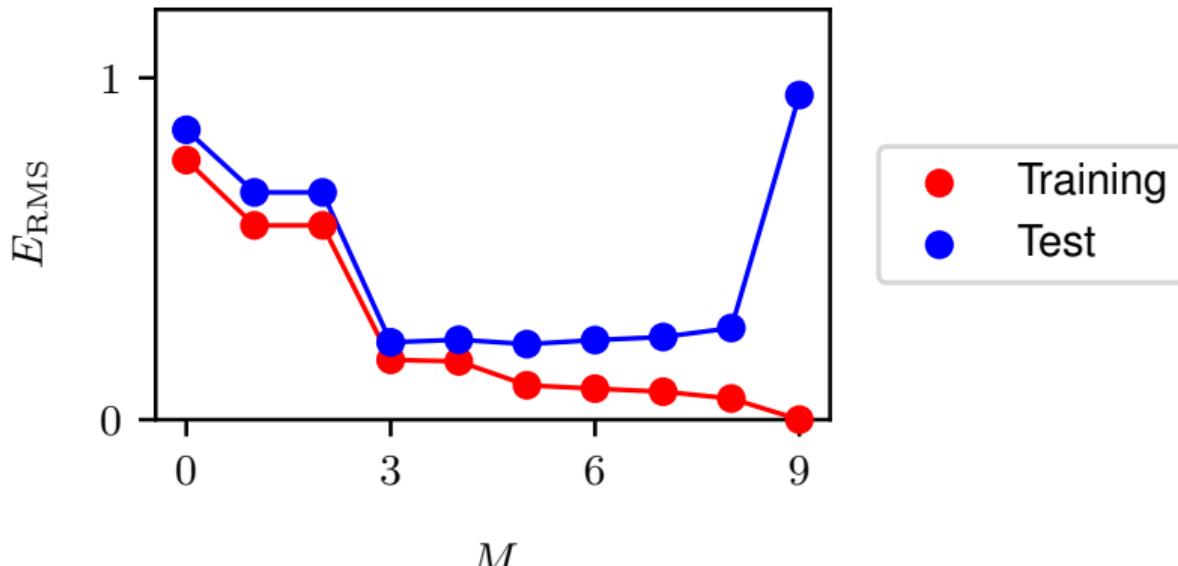


Example polynomial regression (Bishop 2006)

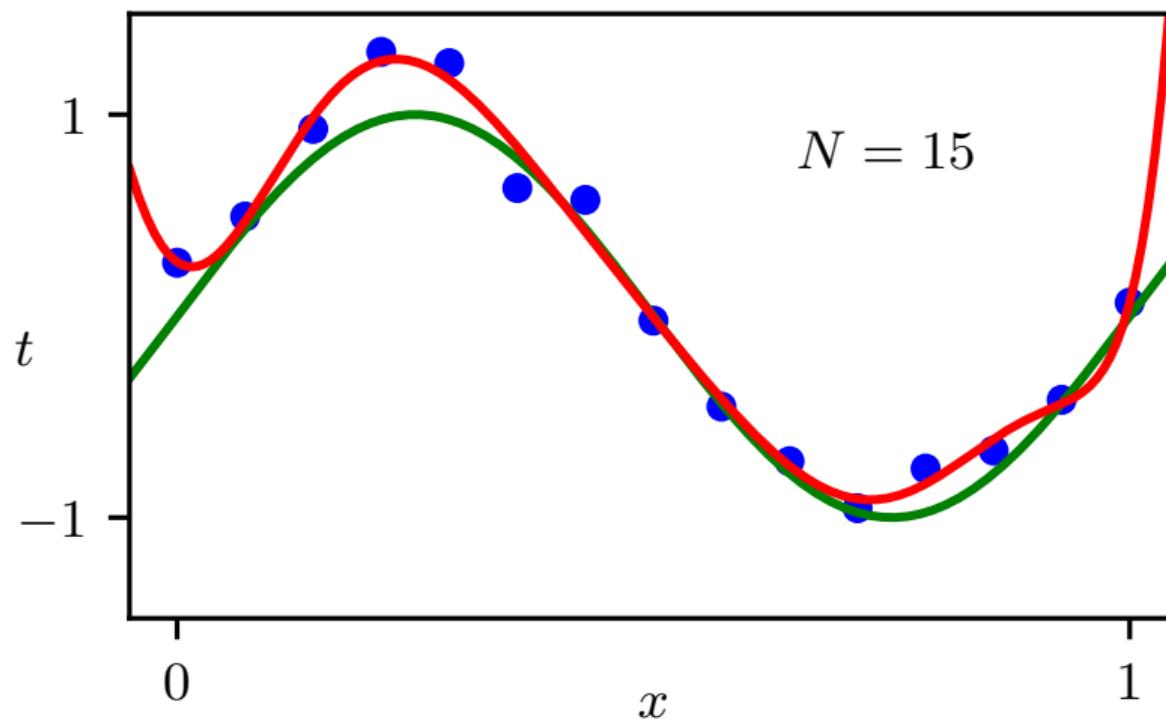
$$h(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$



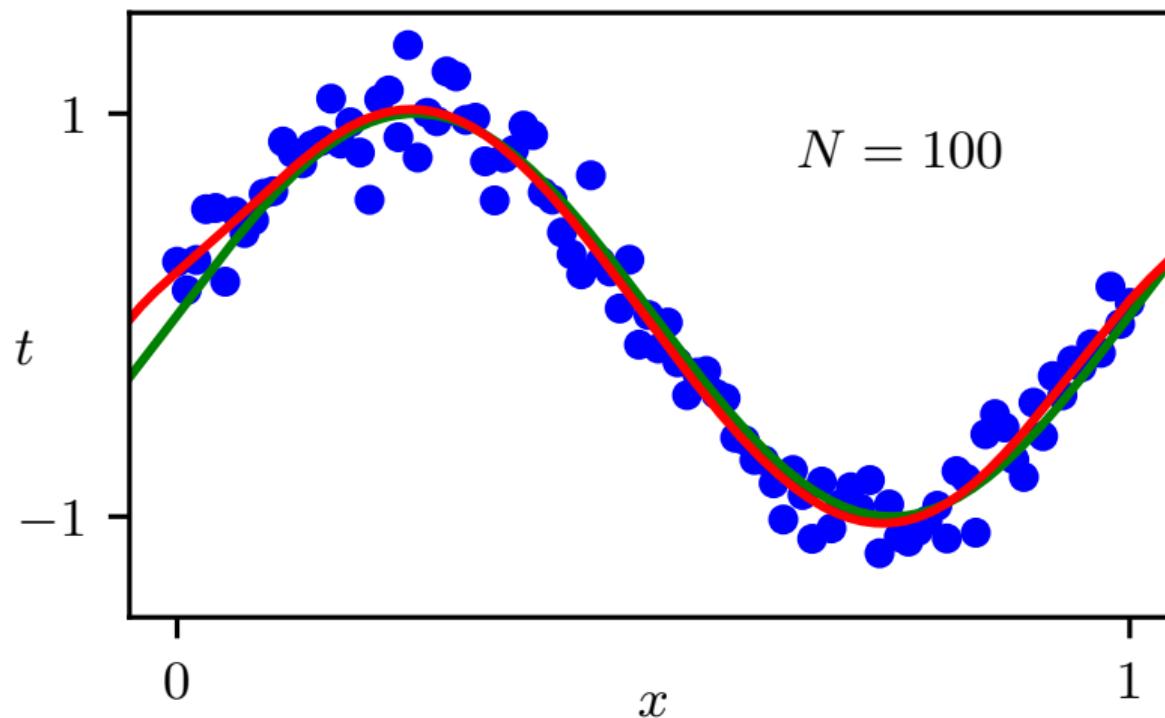
Example polynomial regression (Bishop 2006)



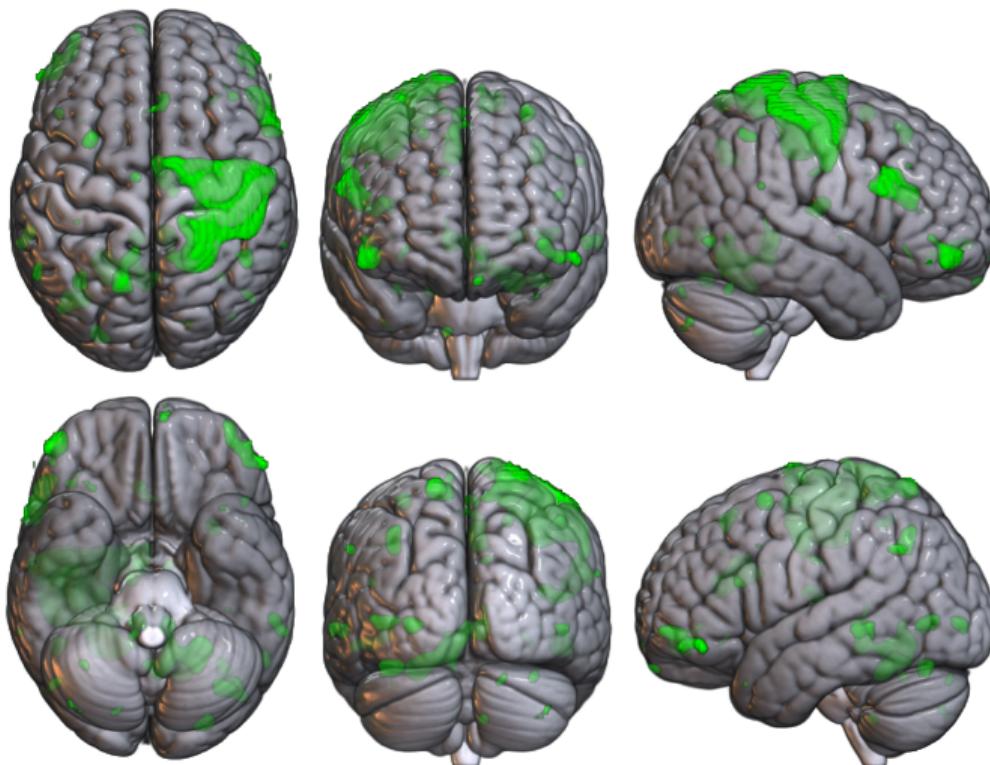
Example polynomial regression (Bishop 2006)



Example polynomial regression (Bishop 2006)



Example: task-related fMRI

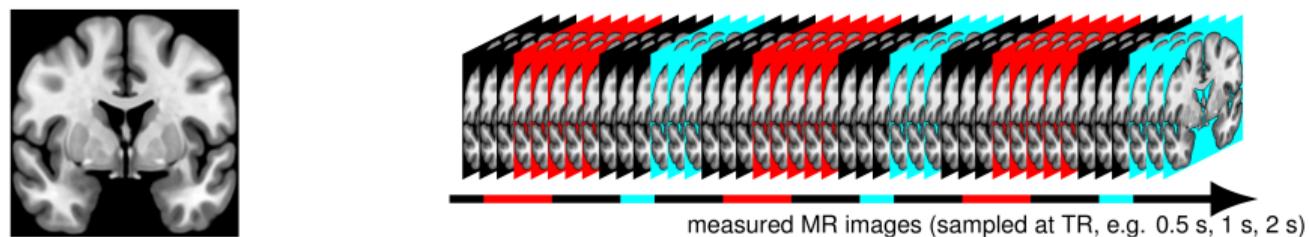
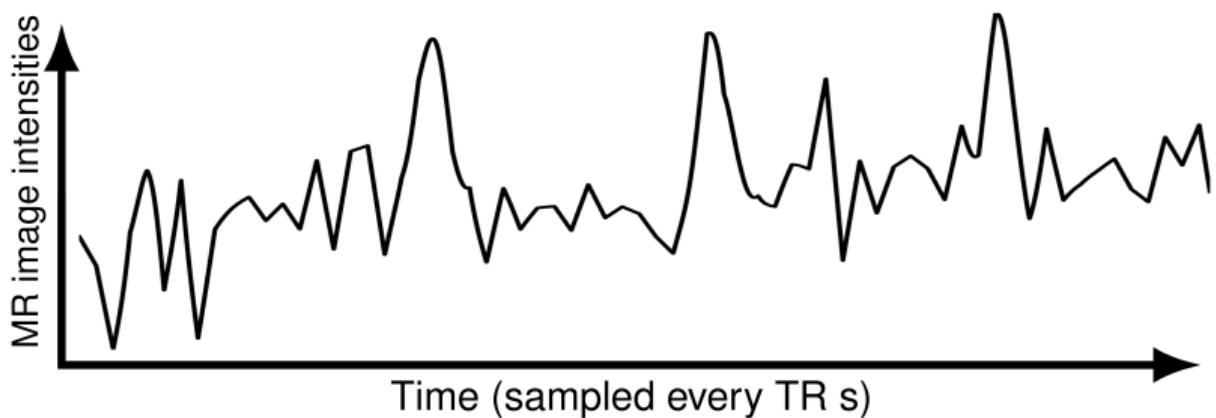


Example: task-related fMRI

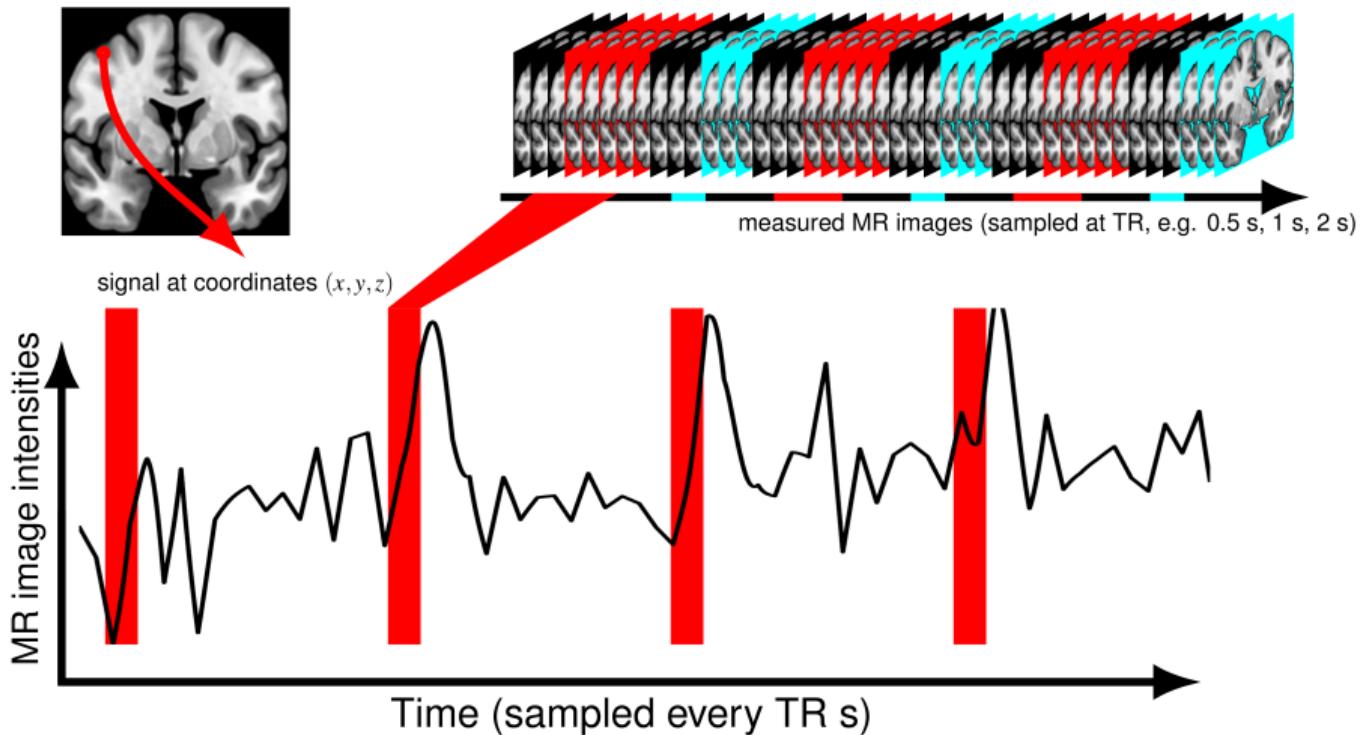
- It is a multiple regression model that quantitatively assesses whether fMRI signals exhibit BOLD-related fluctuations.
- On **one voxel**, the GLM can be expressed as:

$$\mathbf{y} = \beta_0 + \underbrace{\mathbf{x}_1\beta_1 + \cdots + \mathbf{x}_j\beta_j}_{\text{BOLD related signals}} + \underbrace{\mathbf{x}_{j+1}\beta_{j+1} + \cdots + \mathbf{x}_p\beta_p}_{\text{Nuisance signals}} + \epsilon \quad \beta_j \in \mathbb{R}, \mathbf{y}, \mathbf{x}_j \in \mathbb{R}^T$$

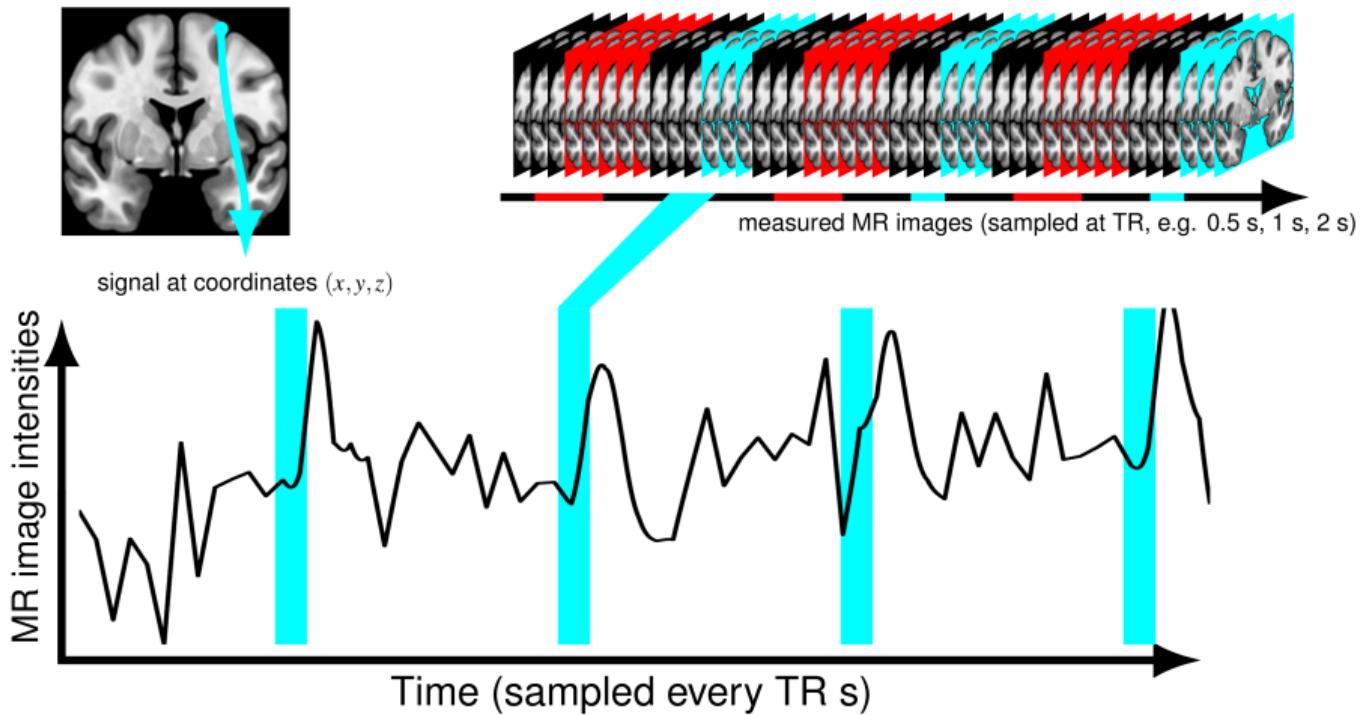
Example: task-related fMRI



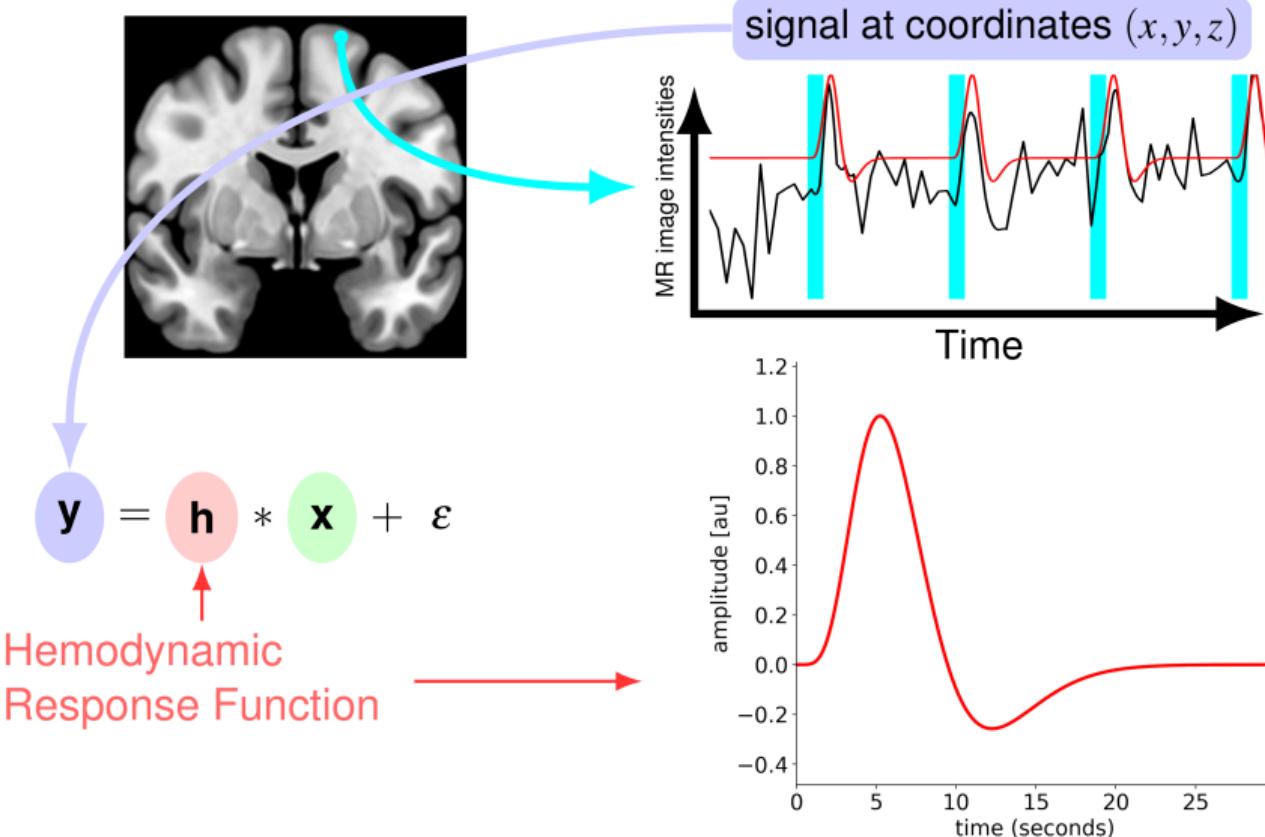
Example: task-related fMRI



Example: task-related fMRI



The BOLD response



The General Linear Model

$$\mathbf{y} = \begin{bmatrix} \text{Measured signal} \\ \hline \end{bmatrix} = \begin{bmatrix} \mathbf{h}^* \mathbf{x}_1 & \mathbf{h}^* \mathbf{x}_2 \\ \hline \text{Expected BOLD response} & \hline \end{bmatrix} \theta + \mathbf{W}\eta + \epsilon$$

The diagram illustrates the General Linear Model (GLM) equation. On the left, the measured signal \mathbf{y} is shown as a vertical stack of five wavy lines. An equals sign follows. To the right of the equals sign is a vertical stack of two columns. The left column is labeled "Measured signal" and contains five wavy lines. The right column is labeled "Expected BOLD response" and contains two pairs of wavy lines: one pair with red bars and one with blue bars. The right side of the equation is $\theta + \mathbf{W}\eta + \epsilon$.

Regularized least squares

$$E_D(\boldsymbol{\theta}) + \lambda E_W(\boldsymbol{\theta})$$

where λ is the regularization coefficient that controls the relative importance of the data-dependent error $E_D(\boldsymbol{\theta})$ and the regularization term $E_W(\boldsymbol{\theta})$.

Regularized least squares

$$E_D(\boldsymbol{\theta}) + \lambda E_W(\boldsymbol{\theta})$$

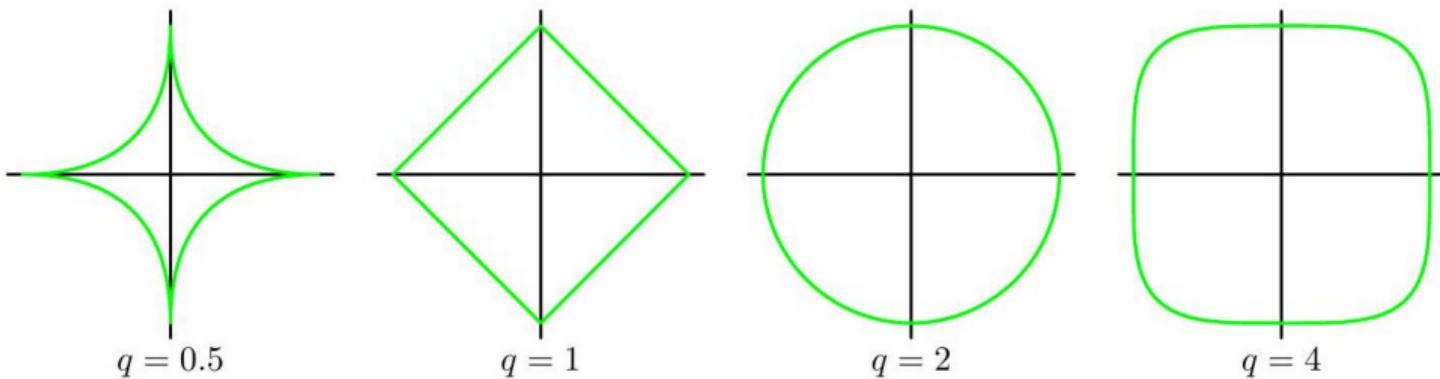
where λ is the regularization coefficient that controls the relative importance of the data-dependent error $E_D(\boldsymbol{\theta})$ and the regularization term $E_W(\boldsymbol{\theta})$.

Common regularizers:

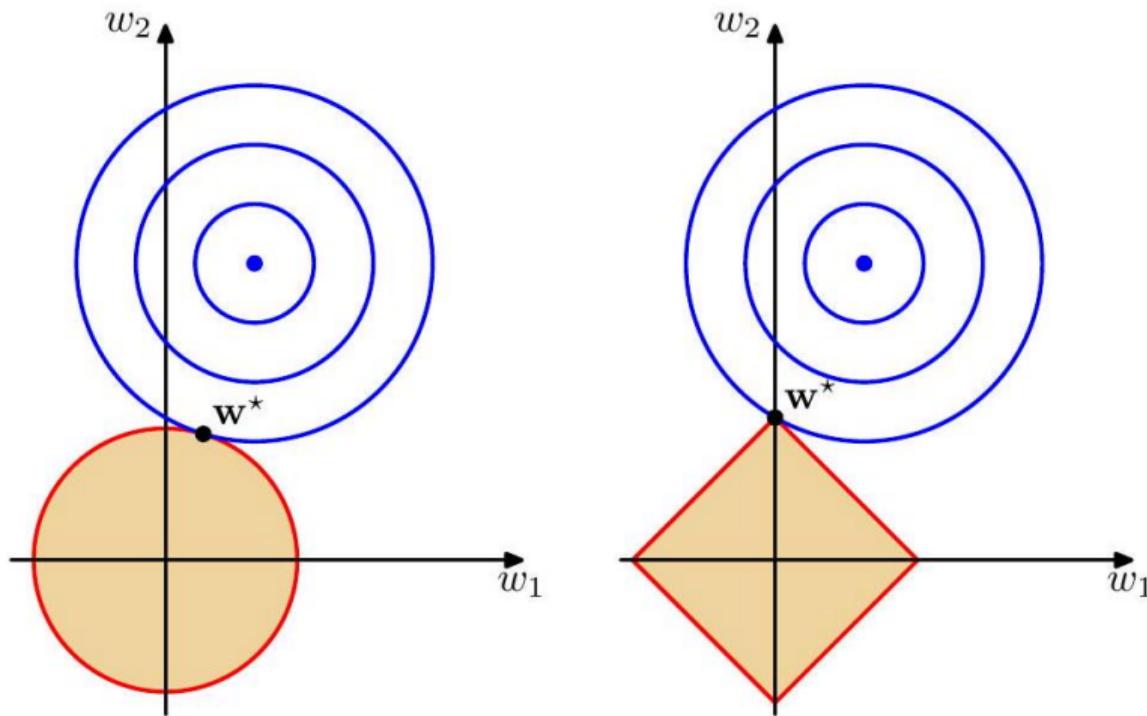
(ridge) $\frac{1}{2} \|\boldsymbol{\theta}\|_2^2 = \frac{1}{2} \boldsymbol{\theta}^\top \boldsymbol{\theta}$

(lasso) $\|\boldsymbol{\theta}\|_1$

Regularization



Regularization



Ridge regression

$$\frac{1}{2} \sum_{n=1}^N \{y_n - \boldsymbol{\theta}^\top \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \boldsymbol{\theta}^\top \boldsymbol{\theta}$$

Bayesian regression approach

Bayesian regression is a probabilistic approach that treats model parameters as random variables.

It combines prior beliefs with data to obtain posterior distributions of the parameters, allowing for uncertainty quantification and flexible modeling.

- Prior Distribution: Initial belief about the model parameters.
- Likelihood: Information from the observed data.
- Posterior Distribution: Updated belief after combining prior and likelihood.

Bayesian Regression Formula

The posterior distribution is calculated using Bayes' theorem:

$$P(\theta|x) \propto P(x|\theta) \cdot P(\theta)$$

where:

- $P(\theta|t)$ is the posterior distribution of parameters θ given data.
- $P(x|\theta)$ is the likelihood of observing data x given parameters θ .
- $P(\theta)$ is the prior distribution of parameters θ .

Ridge Regression as a Bayesian Model

Ridge regression can be viewed as a Bayesian model with a normal prior on the weights:

$$\frac{1}{2} \sum_{n=1}^N \{t_n - \boldsymbol{\theta}^\top \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \boldsymbol{\theta}^\top \boldsymbol{\theta}$$

This corresponds to a likelihood term (first part) and a prior term (second part), where λ controls the strength of the prior.

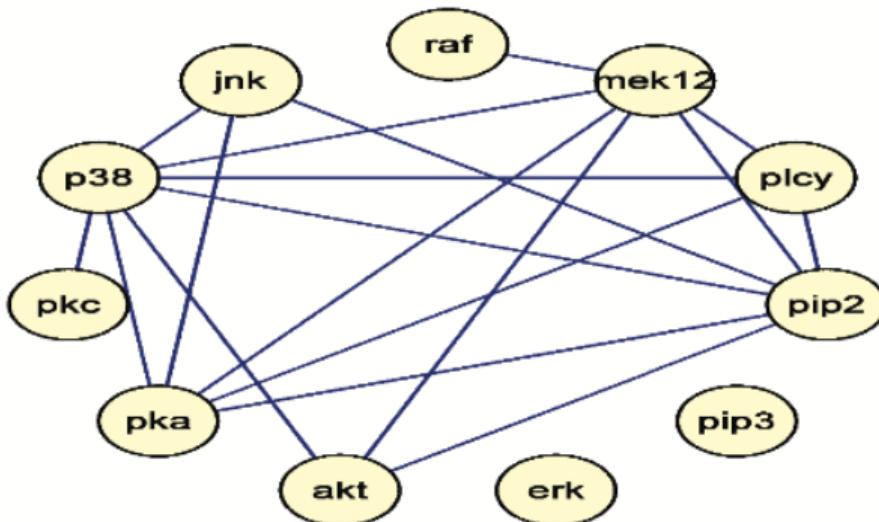
$$\begin{aligned} P(\boldsymbol{\theta}|\mathbf{x}, \lambda) &\propto P(\mathbf{x}|\boldsymbol{\theta}) \cdot P(\boldsymbol{\theta}|\lambda) \\ &\propto \exp\left(-\frac{1}{2} \sum_{n=1}^N \{t_n - \boldsymbol{\theta}^\top \boldsymbol{\phi}(\mathbf{x}_n)\}^2\right) \cdot \exp\left(-\frac{\lambda}{2} \boldsymbol{\theta}^\top \boldsymbol{\theta}\right) \end{aligned}$$

Interpreting Model Uncertainty

Bayesian methods provide a comprehensive view of uncertainty by quantifying both **aleatoric** (data variability) and **epistemic** (parameter uncertainty) uncertainties.

- **Credible Intervals:** Provide a range within which the true parameter value is likely to lie.
- **Posterior Predictive Distribution:** Reflects both types of uncertainty, allowing for informed decision-making.
- **Uncertainty Quantification:** Essential for understanding the reliability of predictions and managing risks.

Example: Causal discovery



Linear Models for Classification

The classification problem

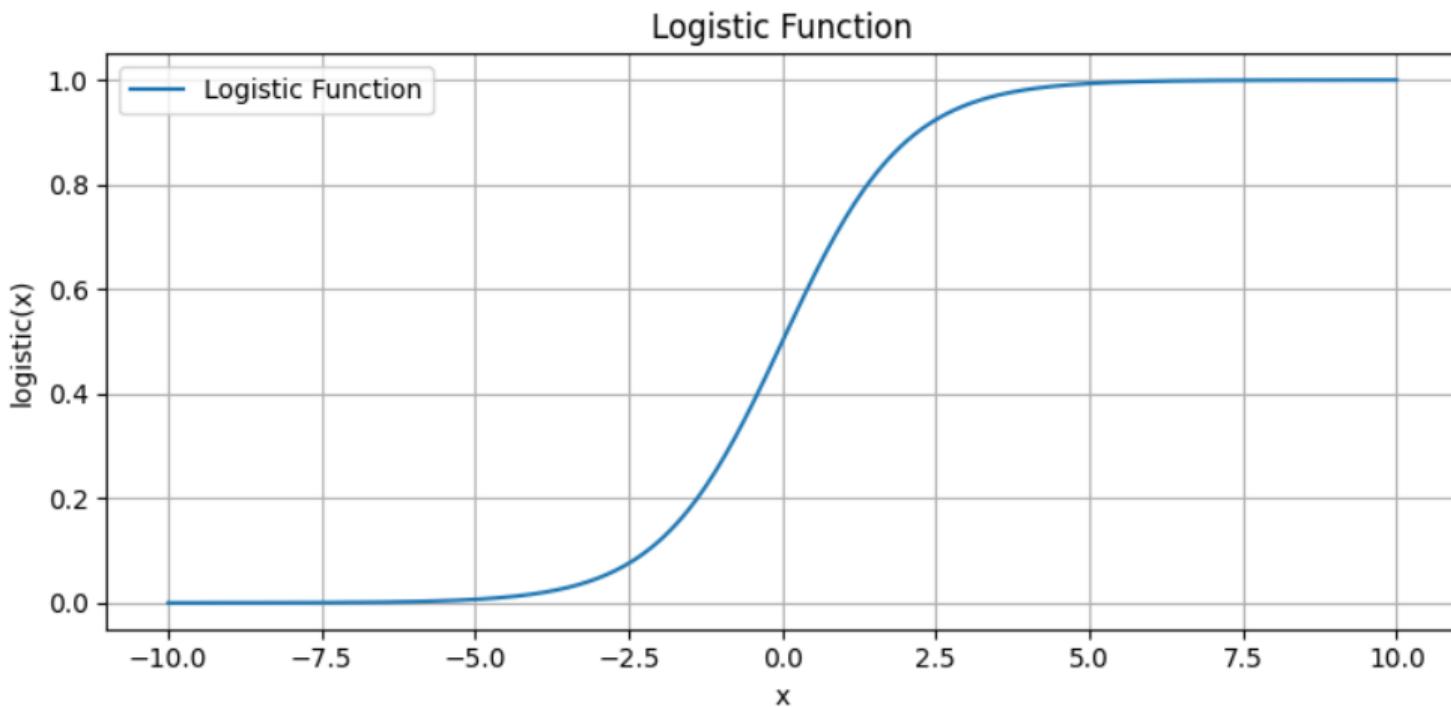
- Classification predicts discrete values for y (unlike regression which predicts continuous values)
- Focus on binary classification where $y \in \{0, 1\}$:
 - 0 = Negative class (denoted by ".")
 - 1 = Positive class (denoted by "+")
- Applications generalize to multi-class problems (more than two categories)
- Example: Email spam classification
 - $x^{(i)}$ = Features of email
 - $y^{(i)}$ = 1 for spam, 0 for non-spam
- Training example pair: Input $x^{(i)}$ with corresponding label $y^{(i)}$

Logistic Regression vs. Linear Regression for Classification

- Linear regression unsuitable for classification.
 - Produces values outside $[0, 1]$ range
 - Poor performance on discrete $y \in \{0, 1\}$
 - Solution: Modified hypothesis using logistic function
- Logistic Regression Hypothesis:
 - $h_{\theta}(x) = g(\theta^T x)$
 - Logistic/Sigmoid function definition:

$$g(z) = \frac{1}{1 + e^{-z}}$$

Logistic function for Classification



Logistic function for Classification

- Bounded output: $0 < h_\theta(x) < 1$
- Natural probabilistic interpretation
- Smooth, S-shaped curve (sigmoid)
- Useful property of the derivative:

$$\begin{aligned}g'(z) &= \frac{d}{dz} \frac{1}{1 + e^{-z}} \\&= \frac{1}{(1 + e^{-z})^2} (e^{-z}) \\&= \frac{1}{(1 + e^{-z})} \cdot \left(1 - \frac{1}{(1 + e^{-z})}\right) \\&= g(z)(1 - g(z)).\end{aligned}$$

Maximum likelihood estimator

- Let us assume that

$$P(y = 1 \mid x; \theta) = h_\theta(x)$$

$$P(y = 0 \mid x; \theta) = 1 - h_\theta(x)$$

- Note that this can be written more compactly as

$$p(y \mid x; \theta) = (h_\theta(x))^y (1 - h_\theta(x))^{1-y}$$

- Likelihood function:

$$\begin{aligned} L(\theta) &= p(\vec{y} \mid X; \theta) \\ &= \prod_{i=1}^n p(y^{(i)} \mid x^{(i)}; \theta) \\ &= \prod_{i=1}^n (h_\theta(x^{(i)}))^{y^{(i)}} (1 - h_\theta(x^{(i)}))^{1-y^{(i)}} \end{aligned}$$

Maximum likelihood estimator

- As in the regression model, it will be easier to maximize the log likelihood:

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^n y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log (1 - h(x^{(i)}))$$

- Gradient ascent update:

$$\theta := \theta + \alpha \nabla_{\theta} \ell(\theta)$$

- Stochastic gradient ascent rule?

Maximum likelihood estimator

- Stochastic gradient ascent rule:

$$\begin{aligned}\frac{\partial}{\partial \theta_j} \ell(\theta) &= \left(y \frac{1}{g(\theta^T x)} - (1-y) \frac{1}{1-g(\theta^T x)} \right) \frac{\partial}{\partial \theta_j} g(\theta^T x) \\ &= \left(y \frac{1}{g(\theta^T x)} - (1-y) \frac{1}{1-g(\theta^T x)} \right) g(\theta^T x) (1-g(\theta^T x)) \frac{\partial}{\partial \theta_j} \theta^T x \\ &= (y(1-g(\theta^T x)) - (1-y)g(\theta^T x)) x_j \\ &= (y - h_\theta(x)) x_j\end{aligned}$$

$$\therefore \theta_j := \theta_j + \alpha (y^{(i)} - h_\theta(x^{(i)})) x_j^{(i)}$$

Logistic Loss Definition

Alternative notation for logistic regression loss:

- Logistic loss function definition:

$$\ell_{\text{logistic}} : \mathbb{R} \times \{0, 1\} \rightarrow \mathbb{R}_{\geq 0}$$

$$\ell_{\text{logistic}}(t, y) \triangleq y \log(1 + \exp(-t)) + (1 - y) \log(1 + \exp(t))$$

- Connection to negative log-likelihood:

$$-\ell(\theta) = \ell_{\text{logistic}}(\theta^\top x, y)$$

- $\theta^\top x$ is called the **logit**

Derivative Analysis

- First derivative of logistic loss:

$$\begin{aligned}\frac{\partial \ell_{\text{logistic}}(t, y)}{\partial t} &= y \frac{-\exp(-t)}{1 + \exp(-t)} + (1 - y) \frac{1}{1 + \exp(-t)} \\ &= \frac{1}{1 + \exp(-t)} - y\end{aligned}$$

- Chain rule application for parameter gradient:

$$\begin{aligned}\frac{\partial}{\partial \theta_j} \ell(\theta) &= -\frac{\partial \ell_{\text{logistic}}(t, y)}{\partial t} \cdot \frac{\partial t}{\partial \theta_j} \\ &= \left(y - \frac{1}{1 + \exp(-t)}\right) \cdot x_j \\ &= (y - h_{\theta}(x))x_j\end{aligned}$$

Multi-class Classification

- Response variable y can take on any one of k values: $y \in \{1, 2, \dots, k\}$
- $p(y | x; \theta)$ is a distribution over k possible discrete outcomes (multinomial distribution)
- Multinomial distribution involves k probabilities ϕ_1, \dots, ϕ_k , where $\sum_{i=1}^k \phi_i = 1$
- Goal: Design a parameterized model that outputs ϕ_1, \dots, ϕ_k given input x

Parameter Groups

- Introduce k groups of parameters $\theta_1, \dots, \theta_k$, each $\theta_i \in \mathbb{R}^d$
- Aim to use $\theta_1^\top x, \dots, \theta_k^\top x$ to represent probabilities $P(y = 1 \mid x; \theta), \dots, P(y = k \mid x; \theta)$
- Challenges:
 - $\theta_j^\top x$ may not be within $[0, 1]$
 - Sum of $\theta_j^\top x$'s may not equal 1
- Solution: Use softmax function

Softmax Function

Definition

The softmax function $\text{softmax} : \mathbb{R}^k \rightarrow \mathbb{R}^k$ is defined as:

$$\text{softmax}(t_1, \dots, t_k) = \begin{bmatrix} \frac{\exp(t_1)}{\sum_{j=1}^k \exp(t_j)} \\ \vdots \\ \frac{\exp(t_k)}{\sum_{j=1}^k \exp(t_j)} \end{bmatrix}$$

- Inputs t to softmax are called logits
- Output is always a probability vector (non-negative entries summing to 1)

Probabilistic Model with Softmax

- Define logits as $t_i = \theta_i^\top x$
- Apply softmax to get probabilities:

$$\begin{bmatrix} P(y = 1 \mid x; \theta) \\ \vdots \\ P(y = k \mid x; \theta) \end{bmatrix} = \begin{bmatrix} \frac{\exp(t_1)}{\sum_{j=1}^k \exp(t_j)} \\ \vdots \\ \frac{\exp(t_k)}{\sum_{j=1}^k \exp(t_j)} \end{bmatrix}$$

- Compact form:

$$P(y = i \mid x; \theta) = \phi_i = \frac{\exp(t_i)}{\sum_{j=1}^k \exp(t_j)} = \frac{\exp(\theta_i^\top x)}{\sum_{j=1}^k \exp(\theta_j^\top x)}$$

Negative Log-Likelihood Derivation

Single Example Loss - Negative log-likelihood for (x, y)

$$\begin{aligned}-\log p(y | x, \theta) &= -\log \left(\frac{\exp(t_y)}{\sum_{j=1}^k \exp(t_j)} \right) \\&= -t_y + \log \left(\sum_{j=1}^k \exp(t_j) \right) \\&= -\log \left(\frac{\exp(\theta_y^\top x)}{\sum_{j=1}^k \exp(\theta_j^\top x)} \right) \quad [\text{expressed with parameters}]\end{aligned}$$

where $\exp(\theta_y^\top x)$ is the correct class score and $\sum_{j=1}^k \exp(\theta_j^\top x)$ is the sum of all class scores.

Overall Loss Function

Negative Log-Likelihood Loss

The total loss over n training examples $(x^{(i)}, y^{(i)})$ and k possible classes:

$$\ell(\theta) = \sum_{i=1}^n -\log \left(\frac{\exp \left(\theta_{y^{(i)}}^\top x^{(i)} \right)}{\sum_{j=1}^k \exp \left(\theta_j^\top x^{(i)} \right)} \right)$$

where $\theta_j \in \mathbb{R}^d$.

Measures discrepancy between predicted probabilities and true labels

Cross-Entropy Loss Definition

Modular Component

Define cross-entropy loss for any logits and label:

$$\ell_{\text{ce}} : \mathbb{R}^k \times \{1, \dots, k\} \rightarrow \mathbb{R}_{\geq 0}$$

$$\ell_{\text{ce}} ((t_1, \dots, t_k), y) = -\log \left(\frac{\exp(t_y)}{\sum_{j=1}^k \exp(t_j)} \right)$$

- Inputs: logits $t_j = \theta_j^\top x$ and true label y
- Output: Non-negative loss value

Modular Loss Formulation

Combined Expression

Using cross-entropy loss notation:

$$\ell(\theta) = \sum_{i=1}^n \ell_{\text{ce}} \left((\theta_1^\top x^{(i)}, \dots, \theta_k^\top x^{(i)}), y^{(i)} \right) = \sum_{\text{examples}} \ell_{\text{ce}}(\text{logits}, \text{label})$$

Gradient of Cross-Entropy Loss

For cross-entropy loss with softmax probabilities $\phi_i = \frac{\exp(t_i)}{\sum_j \exp(t_j)}$:

$$\frac{\partial \ell_{\text{ce}}(t, y)}{\partial t_i} = \phi_i - \mathbb{1}\{y = i\}$$

$\mathbb{1}\{y = i\}$ is the indicator function (1 if true, 0 otherwise)

Gradient of Cross-Entropy Loss

Vectorized form

$$\frac{\partial \ell_{\text{ce}}(t, y)}{\partial t} = \phi - e_y$$

- $e_y \in \mathbb{R}^k$: y -th natural basis vector (one-hot encoding)
- $\phi \in \mathbb{R}^k$: predicted probability vector

Parameter Gradients - SGD/mini-batch updates?

- For one example (x, y) :

$$\begin{aligned}\frac{\partial \ell_{\text{ce}}}{\partial \theta_i} &= \frac{\partial \ell}{\partial t_i} \cdot \frac{\partial t_i}{\partial \theta_i} \\ &= \underbrace{(\phi_i - \mathbb{1}\{y = i\})}_{\text{loss gradient}} \cdot \underbrace{x}_{\text{input features}}\end{aligned}$$

- Across all examples $(x^{(j)}, y^{(j)}), j = 1, \dots, n$:

$$\frac{\partial \ell(\theta)}{\partial \theta_i} = \sum_{j=1}^n (\phi_i^{(j)} - \mathbb{1}\{y^{(j)} = i\}) \cdot x^{(j)}$$

where $\phi_i^{(j)}$ is the model's predicted probability for class i on example j .

Practical implementation

- Compute gradients for each class separately
- Update rule for gradient descent:

$$\theta_i \leftarrow \theta_i - \eta \frac{\partial \ell(\theta)}{\partial \theta_i}$$