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Problem formulation

A hypothesis ℎ is employed as a model for solving the

problem, in that it maps inputs 𝑥 to outputs 𝑦,

𝑥 → ℎ → 𝑦
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Supervised learning

Suppose we have a dataset giving the living areas and prices of houses:

Living area ( feet 2) Price (1000$ s )
2104 400

1600 330

2400 369

1416 232

3000 540

⋮ ⋮
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Supervised learning - notation

𝑥(𝑖) to denote the “input” variables (living area in this example), also

called input features.

𝑦(𝑖) to denote the “output” or target variable that we are trying to

predict (price).

A pair (𝑥(𝑖), 𝑦(𝑖)) is called a training example.

The training set is the list of 𝑛 training examples

{(𝑥(𝑖), 𝑦(𝑖)) ; 𝑖 = 1, … , 𝑛} .

We will also useX to denote the space of input values, andY the

space of output values. In this example,X = Y = ℝ.
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Supervised learning

To describe the supervised learning problem slightly more formally, our goal is:

Given a training set, to learn a functionℎ ∶ X ↦
Y so that ℎ(𝑥) is a “good” predictor for the cor-

responding value of 𝑦.
This function ℎ is called hypothesis.

Regression problem. The target variable is

continuous.

Classification problem. The target variable can take

on only a small number of discrete values.

6/75



Linear Models for Regression
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Regression Basics

Regression Goal

Predict the value of one or more continuous target variables 𝑦 given a

𝐷-dimensional vector x of input variables.
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Linear Regression

Living area ( feet 2) #bedrooms Price (1000$ s )
2104 3 400

1600 3 330

2400 3 369

1416 2 232

3000 4 540

⋮ ⋮ ⋮

We have features 𝐱(𝑖) in ℝ2.

We define 𝑥(𝑖)
1 as the living area of the 𝑖-th house in the training set, and 𝑥(𝑖)

2 is its number

of bedrooms.
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Linear Regression

Wemust decide how to represent functions/hypotheses ℎ.

We decide to approximate 𝑦 as a linear function of 𝑥:

ℎ𝜃(𝐱) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2

𝜃𝑖 ’s are the parameters (also called weights) parameterizing the space of linear functions

mapping fromX toY .

To simplify our notation, we also introduce the convention 𝑥0 = 1 (this is the intercept

term), such that:

ℎ(𝐱) =
𝑑

∑
𝑖=0

𝜃𝑖𝑥𝑖 = 𝜽⊤𝐱
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Cost function

Given a training set, how do we learn the parameters 𝜃?

One reasonable method seems to be to make ℎ(𝐱) close to 𝑦, at
least for the training examples we have.

To formalize this, we will define a function that measures, for each

value of the 𝜃 ’s, how close the ℎ (𝐱(𝑖)) ’s are to the corresponding
𝑦(𝑖) ’s.

We define the cost function:

𝐽(𝜽) = 1
2

𝑛
∑
𝑖=1

(ℎ𝜃 (𝐱(𝑖)) − 𝑦(𝑖))2
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Error surface

12/75



Error surface

13/75



Learning algorithm

Random-Regression

Require: DataD, integer 𝑘
1: for 𝑖 = 1 to 𝑘 do

2: Randomly generate hypothesis 𝜽(𝑖)
3: end for

4: Let 𝑖 = argmin𝑗 𝐽(𝜽(𝑗);D)
5: return 𝜽(𝑖)
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How do you think increasing the number of guesses 𝑘 will change the

training error of the resulting hypothesis?
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Learning algorithm: sequential learning

We want to choose 𝜽 so as to minimize 𝐽(𝜽).

Search algorithm (gradient descent): start with some “initial guess” for 𝜽, and
repeatedly change 𝜽 to make 𝐽(𝜽) smaller, until hopefully we converge to a value

of 𝜽 that minimizes 𝐽(𝜽).
The update step is:

𝜽(𝜏+1) = 𝜽(𝜏) − 𝜂∇𝐸𝑛

where 𝜏 denotes the iteration number, and 𝜂 is a learning rate parameter.

The value of 𝜂 needs to be chosen with care to ensure that the algorithm

converges (Bishop and Nabney, 2008).
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Learning algorithm: sequential learning

For the model:

ℎ𝜃(𝐱) = 𝜃0 + 𝜃1𝑥1 + … + 𝜃𝑛𝑥𝑛 ,

the update step is:

𝜃𝑗 ∶= 𝜃𝑗 − 𝜂 𝜕
𝜕𝜃𝑗

𝐽(𝜃).

This update is simultaneously performed for all values of

𝑗 = 0, … , 𝑑.
𝜂 is called the learning rate.
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Learning algorithm: sequential learning

For the linear regression model, the update step can be:

Batch gradient descent

𝜃𝑗 ∶= 𝜃𝑗 + 𝜂
𝑛

∑
𝑖=1

(𝑦(𝑖) − ℎ𝜃 (x(𝑖))) 𝑥(𝑖)
𝑗 , ( for every 𝑗)

Stochastic or incremental gradient descent

𝜃𝑗 ∶= 𝜃𝑗 + 𝜂 (𝑦(𝑖) − ℎ𝜃 (𝐱(𝑖))) 𝑥(𝑖)
𝑗 , ( for every 𝑖, 𝑗)

or

𝜽 ∶= 𝜽 + 𝜂 (𝑦(𝑖) − ℎ𝜃 (𝐱(𝑖))) 𝐱(𝑖), ( for every 𝑖)
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Regression curve
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Probabilistic interpretation

Consider the model:

𝑦(𝑖) = 𝜽⊤𝐱(𝑖) + 𝜖(𝑖)

where 𝜖(𝑖) ∼ N (0, 𝜎2). I.e., the density of 𝜖(𝑖) is given by:

𝑝 (𝜖(𝑖)) = 1√
2𝜋𝜎

exp(−
(𝜖(𝑖))2

2𝜎2 )

This implies that

𝑝 (𝑦(𝑖) ∣ x(𝑖); 𝜃) = 1√
2𝜋𝜎

exp(−
(𝑦(𝑖) − 𝜽⊤x(𝑖))2

2𝜎2 )
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Probabilistic interpretation
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Probabilistic interpretation

The Likelihood function is given by:

𝐿(𝜽) = 𝐿(𝜽; 𝑋, y) = 𝑝(y ∣ 𝑋; 𝜃)

𝐿(𝜽) =
𝑛

∏
𝑖=1

𝑝 (𝑦(𝑖) ∣ x(𝑖); 𝜽)

=
𝑛

∏
𝑖=1

1√
2𝜋𝜎

exp(−
(𝑦(𝑖) − 𝜽⊤x(𝑖))2

2𝜎2 )
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Probabilistic interpretation

The log Likelihood function is given by:

ℓ(𝜽) = log𝐿(𝜽)

= log

𝑛
∏
𝑖=1

1√
2𝜋𝜎

exp(−
(𝑦(𝑖) − 𝜽⊤x(𝑖))2

2𝜎2 )

=
𝑛

∑
𝑖=1

log
1√
2𝜋𝜎

exp(−
(𝑦(𝑖) − 𝜽⊤x(𝑖))2

2𝜎2 )

= 𝑛 log
1√
2𝜋𝜎

− 1
𝜎2 ⋅ 1

2

𝑛
∑
𝑖=1

(𝑦(𝑖) − 𝜽⊤x(𝑖))2
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Probabilistic interpretation

The solution that minimizes ℓ(𝜽) is:

𝜽ML = (𝐗⊤𝐗)−1 𝐗⊤y

Note that this is equivalent to obtain the parameters by minimizing:

1
2

𝑛
∑
𝑖=1

(𝑦(𝑖) − 𝜽⊤x(𝑖))2

Note that we arrive to a solution regardless the value of 𝜎2. This fact is used to define an

exponential family and generalized linear models.
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Linear Basis Function Models
Linear Regression Models

Linear functions of the adjustable parameters:

𝑦(x, 𝜽) = 𝜃0 + 𝜃1𝑥1 + … + 𝜃𝐷𝑥𝐷

Linear Basis Function Models

Can be extended to include nonlinear functions of the input variables using basis functions:

𝑦(x, 𝜽) = 𝜃0 +
𝑀−1
∑
𝑗=1

𝜃𝑗𝜙𝑗(x) =
𝑀

∑
𝑗=0

𝜃𝑗𝜙𝑗(x) = 𝜽T𝝓(x)

Basis Functions

Examples include polynomials, Gaussians, and sigmoidals.
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Basis Functions

Examples of Basis Functions

𝜙𝑗(𝑥) = 𝑥𝑗 (Polynomial)

𝜙𝑗(𝑥) = exp{−
(𝑥 − 𝜇𝑗)2

2𝑠2 } (Gaussian)

𝜙𝑗(𝑥) = 𝜎 (
𝑥 − 𝜇𝑗

𝑠
) (Sigmoidal)
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Basis Functions
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Example polynomial regression (Bishop 2006)

0 1x

−1

1

t
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Example polynomial regression (Bishop 2006)
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Example polynomial regression (Bishop 2006)

ℎ(𝑥, 𝑤) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + … + 𝑤𝑀𝑥𝑀

𝐸(𝑤) =
𝑁

∑
𝑛=1

(ℎ (𝑥𝑛, 𝑤) − 𝑡𝑛)2

30/75



Example polynomial regression (Bishop 2006)

ℎ(𝑥, 𝑤) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + … + 𝑤𝑀𝑥𝑀

0 1x

−1

1

t

M = 0
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Example polynomial regression (Bishop 2006)

ℎ(𝑥, 𝑤) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + … + 𝑤𝑀𝑥𝑀
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Example polynomial regression (Bishop 2006)

ℎ(𝑥, 𝑤) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + … + 𝑤𝑀𝑥𝑀

0 1x
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t

M = 9
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Example polynomial regression (Bishop 2006)
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Example polynomial regression (Bishop 2006)

0 1x
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Example polynomial regression (Bishop 2006)

0 1x

−1

1

t

N = 100
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Example: task-related fMRI
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Example: task-related fMRI

It is a multiple regression model that quantitatively assesses whether fMRI signals exhibit

BOLD-related fluctuations.

On one voxel, the GLM can be expressed as:

y = 𝛽0+x1𝛽1 + ⋯ + x𝑗𝛽𝑗⏟⏟⏟⏟⏟⏟⏟
BOLD related signals

+ x𝑗+1𝛽𝑗+1 + ⋯ + x𝑝𝛽𝑝⏟⏟⏟⏟⏟⏟⏟⏟⏟
Nuisance signals

+𝝐 𝛽𝑗 ∈ ℝ, y, x𝑗 ∈ ℝ𝑇
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Example: task-related fMRI
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Example: task-related fMRI

41/75



Example: task-related fMRI
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The BOLD response

43/75



The General Linear Model
y
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h * x2y
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Regularized least squares

𝐸𝐷(𝜽) + 𝜆𝐸𝑊(𝜽)

where 𝜆 is the regularization coefficient that controls the relative

importance of the data-dependent error 𝐸𝐷(𝜽) and the regularization
term 𝐸𝑊(𝜽).

Common regularizers:

(ridge) 1
2‖𝜽‖2

2 = 1
2𝜽T𝜽

(lasso) ‖𝜽‖1
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Regularization

46/75



Regularization
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Ridge regression

1
2

𝑁
∑
𝑛=1

{𝑦𝑛 − 𝜽T𝝓 (x𝑛)}2 + 𝜆
2

𝜽T𝜽
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Bayesian regression approach

Bayesian regression is a probabilistic approach that treats model parameters as random

variables.

It combines prior beliefs with data to obtain posterior distributions of the parameters, allowing

for uncertainty quantification and flexible modeling.

Prior Distribution: Initial belief about the model parameters.

Likelihood: Information from the observed data.

Posterior Distribution: Updated belief after combining prior and likelihood.
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Bayesian Regression Formula

The posterior distribution is calculated using Bayes’ theorem:

𝑃(𝜽|x) ∝ 𝑃(x|𝜽) ⋅ 𝑃 (𝜽)

where:

𝑃(𝜽|t) is the posterior distribution of parameters 𝜽 given data.

𝑃(x|𝜽) is the likelihood of observing data x given parameters 𝜽.
𝑃(𝜽) is the prior distribution of parameters 𝜽.
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Ridge Regression as a Bayesian Model
Ridge regression can be viewed as a Bayesian model with a normal prior on the weights:

1
2

𝑁
∑
𝑛=1

{𝑡𝑛 − 𝜽T𝝓 (x𝑛)}2 + 𝜆
2

𝜽T𝜽

This corresponds to a likelihood term (first part) and a prior term (second part), where 𝜆 controls

the strength of the prior.

𝑃(𝜽|x, 𝜆) ∝ 𝑃(x|𝜽) ⋅ 𝑃 (𝜽|𝜆)

∝ exp(−1
2

𝑁
∑
𝑛=1

{𝑡𝑛 − 𝜽T𝝓 (x𝑛)}2) ⋅ exp(−𝜆
2

𝜽T𝜽)
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Interpreting Model Uncertainty

Bayesian methods provide a comprehensive view of uncertainty by quantifying both aleatoric

(data variability) and epistemic (parameter uncertainty) uncertainties.

Credible Intervals: Provide a range within which the true parameter value is likely to lie.

Posterior Predictive Distribution: Reflects both types of uncertainty, allowing for

informed decision-making.

Uncertainty Quantification: Essential for understanding the reliability of predictions and

managing risks.
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Example: Causal discovery
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Linear Models for Classification
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The classification problem

Classification predicts discrete values for 𝑦 (unlike regression which predicts continuous

values)

Focus on binary classification where 𝑦 ∈ {0, 1}:
0 = Negative class (denoted by ”.”)

1 = Positive class (denoted by ”+”)

Applications generalize to multi-class problems (more than two categories)

Example: Email spam classification

𝑥(𝑖) = Features of email

𝑦(𝑖) = 1 for spam, 0 for non-spam

Training example pair: Input 𝑥(𝑖) with corresponding label 𝑦(𝑖)
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Logistic Regression vs. Linear Regression for

Classification
Linear regression unsuitable for classification.

Produces values outside [0, 1] range

Poor performance on discrete 𝑦 ∈ {0, 1}

Solution: Modified hypothesis using logistic function

Logistic Regression Hypothesis:

ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥)

Logistic/Sigmoid function definition:

𝑔(𝑧) = 1
1 + 𝑒−𝑧
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Logistic function for Classification

57/75



Logistic function for Classification
Bounded output: 0 < ℎ𝜃(𝑥) < 1

Natural probabilistic interpretation

Smooth, S-shaped curve (sigmoid)

Useful property of the derivative:

𝑔′(𝑧) = 𝑑
𝑑𝑧

1
1 + 𝑒−𝑧

= 1
(1 + 𝑒−𝑧)2 (𝑒−𝑧)

= 1
(1 + 𝑒−𝑧)

⋅ (1 − 1
(1 + 𝑒−𝑧)

)

= 𝑔(𝑧)(1 − 𝑔(𝑧)).
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Maximum likelihood estimator
Let us assume that

𝑃(𝑦 = 1 ∣ 𝑥; 𝜃) = ℎ𝜃(𝑥)
𝑃 (𝑦 = 0 ∣ 𝑥; 𝜃) = 1 − ℎ𝜃(𝑥)

Note that this can be written more compactly as

𝑝(𝑦 ∣ 𝑥; 𝜃) = (ℎ𝜃(𝑥))𝑦 (1 − ℎ𝜃(𝑥))1−𝑦

Likelihood function:

𝐿(𝜃) = 𝑝( ⃗𝑦 ∣ 𝑋; 𝜃)

=
𝑛

∏
𝑖=1

𝑝 (𝑦(𝑖) ∣ 𝑥(𝑖); 𝜃)

=
𝑛

∏
𝑖=1

(ℎ𝜃 (𝑥(𝑖)))𝑦(𝑖)

(1 − ℎ𝜃 (𝑥(𝑖)))1−𝑦(𝑖)
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Maximum likelihood estimator

As in the regression model, it will be easier to maximize the log likelihood:

ℓ(𝜃) = log𝐿(𝜃) =
𝑛

∑
𝑖=1

𝑦(𝑖) logℎ (𝑥(𝑖)) + (1 − 𝑦(𝑖)) log (1 − ℎ (𝑥(𝑖)))

Gradient ascent update:

𝜃 ∶= 𝜃 + 𝛼∇𝜃ℓ(𝜃)

Stochastic gradient ascent rule?
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Maximum likelihood estimator

Stochastic gradient ascent rule:

𝜕
𝜕𝜃𝑗

ℓ(𝜃) = (𝑦 1
𝑔 (𝜃𝑇𝑥)

− (1 − 𝑦) 1
1 − 𝑔 (𝜃𝑇𝑥)

) 𝜕
𝜕𝜃𝑗

𝑔 (𝜃𝑇𝑥)

= (𝑦 1
𝑔 (𝜃𝑇𝑥)

− (1 − 𝑦) 1
1 − 𝑔 (𝜃𝑇𝑥)

) 𝑔 (𝜃𝑇𝑥) (1 − 𝑔 (𝜃𝑇𝑥)) 𝜕
𝜕𝜃𝑗

𝜃𝑇𝑥

= (𝑦 (1 − 𝑔 (𝜃𝑇𝑥)) − (1 − 𝑦)𝑔 (𝜃𝑇𝑥)) 𝑥𝑗

= (𝑦 − ℎ𝜃(𝑥)) 𝑥𝑗

∴𝜃𝑗 ∶= 𝜃𝑗 + 𝛼 (𝑦(𝑖) − ℎ𝜃 (𝑥(𝑖))) 𝑥(𝑖)
𝑗
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Logistic Loss Definition

Alternative notation for logistic regression loss:

Logistic loss function definition:

ℓlogistic ∶ ℝ × {0, 1} → ℝ≥0

ℓlogistic(𝑡, 𝑦) ≜ 𝑦 log(1 + exp(−𝑡)) + (1 − 𝑦) log(1 + exp(𝑡))

Connection to negative log-likelihood:

−ℓ(𝜃) = ℓlogistic(𝜃⊤𝑥, 𝑦)

𝜃⊤𝑥 is called the logit
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Derivative Analysis
First derivative of logistic loss:

𝜕ℓlogistic(𝑡, 𝑦)
𝜕𝑡

= 𝑦 − exp(−𝑡)
1 + exp(−𝑡)

+ (1 − 𝑦) 1
1 + exp(−𝑡)

= 1
1 + exp(−𝑡)

− 𝑦

Chain rule application for parameter gradient:

𝜕
𝜕𝜃𝑗

ℓ(𝜃) = −
𝜕ℓlogistic(𝑡, 𝑦)

𝜕𝑡
⋅ 𝜕𝑡

𝜕𝜃𝑗

= (𝑦 − 1
1 + exp(−𝑡)

) ⋅ 𝑥𝑗

= (𝑦 − ℎ𝜃(𝑥))𝑥𝑗
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Multi-class Classification

Response variable 𝑦 can take on any one of 𝑘 values: 𝑦 ∈ {1, 2, … , 𝑘}

𝑝(𝑦 ∣ 𝑥; 𝜃) is a distribution over 𝑘 possible discrete outcomes (multinomial distribution)

Multinomial distribution involves 𝑘 probabilities 𝜙1, … , 𝜙𝑘, where ∑𝑘
𝑖=1 𝜙𝑖 = 1

Goal: Design a parameterized model that outputs 𝜙1, … , 𝜙𝑘 given input 𝑥
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Parameter Groups

Introduce 𝑘 groups of parameters 𝜃1, … , 𝜃𝑘, each 𝜃𝑖 ∈ ℝ𝑑

Aim to use 𝜃⊤
1 𝑥, … , 𝜃⊤

𝑘 𝑥 to represent probabilities𝑃(𝑦 = 1 ∣ 𝑥; 𝜃), … , 𝑃 (𝑦 = 𝑘 ∣ 𝑥; 𝜃)
Challenges:

𝜃⊤
𝑗 𝑥 may not be within [0, 1]

Sum of 𝜃⊤
𝑗 𝑥’s may not equal 1

Solution: Use softmax function
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Softmax Function

Definition
The softmax function softmax ∶ ℝ𝑘 → ℝ𝑘 is defined as:

softmax (𝑡1, … , 𝑡𝑘) =
⎡
⎢
⎢
⎣

exp(𝑡1)
∑𝑘

𝑗=1 exp(𝑡𝑗)

⋮
exp(𝑡𝑘)

∑𝑘
𝑗=1 exp(𝑡𝑗)

⎤
⎥
⎥
⎦

Inputs 𝑡 to softmax are called logits

Output is always a probability vector (non-negative entries summing to 1)
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Probabilistic Model with Softmax

Define logits as 𝑡𝑖 = 𝜃⊤
𝑖 𝑥

Apply softmax to get probabilities:

⎡⎢
⎣

𝑃(𝑦 = 1 ∣ 𝑥; 𝜃)
⋮

𝑃 (𝑦 = 𝑘 ∣ 𝑥; 𝜃)
⎤⎥
⎦

=
⎡
⎢
⎢
⎣

exp(𝑡1)
∑𝑘

𝑗=1 exp(𝑡𝑗)

⋮
exp(𝑡𝑘)

∑𝑘
𝑗=1 exp(𝑡𝑗)

⎤
⎥
⎥
⎦

Compact form:

𝑃(𝑦 = 𝑖 ∣ 𝑥; 𝜃) = 𝜙𝑖 = exp(𝑡𝑖)
∑𝑘

𝑗=1 exp(𝑡𝑗)
= exp(𝜃⊤

𝑖 𝑥)
∑𝑘

𝑗=1 exp(𝜃⊤
𝑗 𝑥)
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Negative Log-Likelihood Derivation

Single Example Loss - Negative log-likelihood for (𝑥, 𝑦)

− log 𝑝(𝑦 ∣ 𝑥, 𝜃) = − log⎛⎜
⎝

exp(𝑡𝑦)
∑𝑘

𝑗=1 exp(𝑡𝑗)
⎞⎟
⎠

= −𝑡𝑦 + log(
𝑘

∑
𝑗=1

exp(𝑡𝑗))

= − log⎛⎜
⎝

exp(𝜃⊤
𝑦 𝑥)

∑𝑘
𝑗=1 exp(𝜃⊤

𝑗 𝑥)
⎞⎟
⎠

[expressed with parameters]

where exp(𝜃⊤
𝑦 𝑥) is the correct class score and ∑𝑘

𝑗=1 exp(𝜃⊤
𝑗 𝑥) is the sum of all class scores.
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Overall Loss Function

Negative Log-Likelihood Loss

The total loss over 𝑛 training examples (𝑥(𝑖), 𝑦(𝑖)) and 𝑘 possible classes:

ℓ(𝜃) =
𝑛

∑
𝑖=1

− log⎛⎜
⎝

exp (𝜃⊤
𝑦(𝑖)𝑥(𝑖))

∑𝑘
𝑗=1 exp (𝜃⊤

𝑗 𝑥(𝑖))
⎞⎟
⎠

where 𝜃𝑗 ∈ ℝ𝑑.

Measures discrepancy between predicted probabilities and true labels
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Cross-Entropy Loss Definition

Modular Component

Define cross-entropy loss for any logits and label:

ℓce ∶ ℝ𝑘 × {1, … , 𝑘} → ℝ≥0

ℓce ((𝑡1, … , 𝑡𝑘), 𝑦) = − log⎛⎜
⎝

exp(𝑡𝑦)
∑𝑘

𝑗=1 exp(𝑡𝑗)
⎞⎟
⎠

Inputs: logits 𝑡𝑗 = 𝜃⊤
𝑗 𝑥 and true label 𝑦

Output: Non-negative loss value
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Modular Loss Formulation

Combined Expression

Using cross-entropy loss notation:

ℓ(𝜃) =
𝑛

∑
𝑖=1

ℓce ((𝜃⊤
1 𝑥(𝑖), … , 𝜃⊤

𝑘 𝑥(𝑖)), 𝑦(𝑖)) = ∑
examples

ℓce(logits, label)

71/75



Gradient of Cross-Entropy Loss

For cross-entropy loss with softmax probabilities 𝜙𝑖 = exp(𝑡𝑖)
∑𝑗 exp(𝑡𝑗) :

𝜕ℓce(𝑡, 𝑦)
𝜕𝑡𝑖

= 𝜙𝑖 − 1{𝑦 = 𝑖}

1{𝑦 = 𝑖} is the indicator function (1 if true, 0 otherwise)
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Gradient of Cross-Entropy Loss

Vectorized form

𝜕ℓce(𝑡, 𝑦)
𝜕𝑡

= 𝜙 − 𝑒𝑦

𝑒𝑦 ∈ ℝ𝑘: 𝑦-th natural basis vector (one-hot encoding)
𝜙 ∈ ℝ𝑘: predicted probability vector
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Parameter Gradients - SGD/mini-batch updates?

For one example (𝑥, 𝑦):

𝜕ℓce
𝜕𝜃𝑖

= 𝜕ℓ
𝜕𝑡𝑖

⋅ 𝜕𝑡𝑖
𝜕𝜃𝑖

= (𝜙𝑖 − 1{𝑦 = 𝑖})⏟⏟⏟⏟⏟⏟⏟
loss gradient

⋅ 𝑥⏟
input features

Across all examples (𝑥(𝑗), 𝑦(𝑗)), 𝑗 = 1, … , 𝑛:

𝜕ℓ(𝜃)
𝜕𝜃𝑖

=
𝑛

∑
𝑗=1

(𝜙(𝑗)
𝑖 − 1{𝑦(𝑗) = 𝑖}) ⋅ 𝑥(𝑗)

where 𝜙(𝑗)
𝑖 is the model’s predicted probability for class 𝑖 on example 𝑗.
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Practical implementation

Compute gradients for each class separately

Update rule for gradient descent:

𝜃𝑖 ← 𝜃𝑖 − 𝜂𝜕ℓ(𝜃)
𝜕𝜃𝑖
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