Linear models for regression and classification

Dr. Alejandro Veloz



Supervised learning
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Problem Formulation

A hypothesis h is employed as a model for solving the
problem, in that it maps inputs x to outputs ¥,

z— h|—y
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Supervised learning

Suppose we have a dataset giving the living areas and prices of houses:

Living area ( feet 2) | Price (10008 s ) [——
2104 400
1600 330
2400 369
1416 232 .
3000 540 E|
: : 2w

square feet
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Supervised learning - notation

o 2" to denote the “input” variables (living area in this example), also
called input features.
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Supervised learning - notation

o 2" to denote the “input” variables (living area in this example), also
called input features.

. y(i) to denote the “output” or target variable that we are trying to
predict (price).

e A pair (m(i), y@) is called a training example.
e The training set is the list of n training examples
{(a:@,y(i)) 1 =1,... ,n} :

e We will also use X to denote the space of input values, and ) the

space of output values. In this example, ¥ =Y = R.
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Supervised learning

To describe the supervised learning problem slightly more formally, our goal is:

Given a training set, to learn a functionh : X +>
Y so that h(x) is a “good” predictor for the cor-
responding value of v.

e This function A is called hypothesis.

e Regression problem. The target variable is
continuous.

e Classification problem. The target variable can take
on only a small number of discrete values.

X predicted y
(living area of (predicted price)
house.) of house)



Linear Models for Regression
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Regression Basics

Regression Goal

Predict the value of one or more continuous target variables y given a
D-dimensional vector x of input variables.

8/75



Linear Regression

Living area ( feet ?) | #bedrooms | Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540

e We have features x() in R2 '
o We define z\") as the living area of the i-th house in the training set, and z:} is its number
of bedrooms.
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Linear Regression

e We must decide how to represent functions/hypotheses h.

e We decide to approximate ¥ as a linear function of z:
ho(x) = by + 0171 + Oy24
e 0, s are the parameters (also called weights) parameterizing the space of linear functions
mapping from X to ).

e To simplify our notation, we also introduce the convention x, = 1 (this is the intercept
term), such that:



Cost Function

Given a training set, how do we learn the parameters 6?
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Cost Function

Given a training set, how do we learn the parameters 6?

« One reasonable method seems to be to make /(x) close to ¥, at
least for the training examples we have.

e To formalize this, we will define a function that measures, for each
value of the 8's, how close the h (x(i)) 's are to the corresponding
(i) 1
y\'s.

o We define the cost function:



Error surface
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Error surface
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Learning algorithm

Random-Regression

Require: Data D, integer k
1: fori = 1to kdo
2. Randomly generate hypothesis 0(7)
3: end for
4: Let7 = argmin; J(6(j); D)
5: return 0(7)
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How do you think increasing the number of guesses k will change the
training error of the resulting hypothesis?
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Learning algorithm: sequential learning

e We want to choose 6 so as to minimize J(8).
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e Search algorithm (gradient descent): start with some “initial guess” for 6, and

repeatedly change 6 to make .J (@) smaller, until hopefully we converge to a value
of @ that minimizes J (0).
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Learning algorithm: sequential learning

e We want to choose 6 so as to minimize J(8).

e Search algorithm (gradient descent): start with some “initial guess” for 6, and
repeatedly change 6 to make .J (@) smaller, until hopefully we converge to a value
of @ that minimizes J (0).

e The update step is:
0<T+1) — 9(7) - WVEn

where 7 denotes the iteration number, and 77 is a learning rate parameter.

e The value of 7 needs to be chosen with care to ensure that the algorithm
converges (Bishop and Nabney, 2008).



Learning algorithm: sequential learning

e For the model:

the update step is:

0

e This update is simultaneously performed for all values of
7=0,....d.

e 7)is called the learning rate.
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Learning algorithm: sequential learning

e Forthe linear regression model, the update step can be:

o Batch gradient descent

n

0;:=0,+n Z (y(i) — hy (X(i))) x;i), (forevery j)
i=1

o Stochastic or incremental gradient descent
0;:=0;+n (y(i) — hg (x(i))) m?, (forevery i, j)

or

0:=06+n(y" —hy (x))x", (Fforeveryi)
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price (in $1000)

Regression curve

housing prices
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Probabilistic interpretation

Consider the model:

where €V ~ N (0, 52). Le., the density of €*) is given by:

()2
p (e“)) = \/21?0 exp <—(202> )

This implies that

A A () _ gTx(0)?
Py | x9:0) = —— exp (—<y <) )

V2o 202



Probabilistic interpretation

y(.’s, W) ,

120'
p(tlzo, w, B)

Iy x
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Probabilistic interpretation

The Likelihood Function is given by

L(6) = L(6; X,y) = p(y | X;0)
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Probabilistic interpretation

The Likelihood Function is given by

L(0) = L(6; X,y) = p(y | X;0)

=1 (" x®

=1

.
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Probabilistic interpretation

The Likelihood Function is given by

L(6) = L(6; X,y) = p(y | X;0)

L(6) = f[p (v | x9;0)
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Probabilistic interpretation

The log Likelihood Function is given by:

0(0) =log L(0)

=1
n 1 (y© — 67x)?
= Z_Zl log \/%0 exp | — 952
1 I 1< 2
= - — .z (4 — 9T x(®)
nlog\/%a = 2;@ 6" x")
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Probabilistic interpretation

The solution that minimizes £(6) is:

OML = (XTX)_l XTy

e Note that this is equivalent to obtain the parameters by minimizing:

N | —

1

S (y — 67x()?
=1

e Note that we arrive to a solution regardless the value of 0. This fact is used to define an
exponential Family and generalized linear models.



Linear Basis Function Models

Linear Regression Models

Linear functions of the adjustable parameters:
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Linear Basis Function Models

Linear Regression Models

Linear functions of the adjustable parameters:

Linear Basis Function Models

Can be extended to include nonlinear functions of the input variables using basis functions:

Y0,0) =6+ 3 0,0, = D 0,0,(x) = 07(x)

J

Basis Functions

Examples include polynomials, Gaussians, and sigmoidals.
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Basis Functions

Examples of Basis Functions

(r) = 27 (Polynomial)
"E_
—exp{ ,u] } (Gaussian)
é,( ~—14) (sigmoidal



Basis Functions

A \ 1
f/
0.5 0.75 0.75
0 / 05 0.5
-05 / 0.25 0.25
/ /
_1 0 0 i
-1 0 1 -1 0 1 -1 0 1
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Example polynomial regression (Bishop 2006)

®
1 o
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Example polynomial regression (Bishop 2006)

A

tn

Y(Tn, W)

v
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Example polynomial regression (Bishop 2006)

h(z,w) = wy + wyx + wez? + ... + wyaM
N
E(w) =) (h(z,,w)—t,)’

n=1
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Example polynomial regression (Bishop 2006)

H M=0 ! M=1 ! M=3 ! M=9
d (J J
o, .,
t t t t
(]
—14 —14 —14 -1

0 N 1 0 w 1 0 v 1 0

1 -
g ® Training
Eg ® Test
0 1 1 1
0 3 6 9
M
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Example polynomial regression (Bishop 2006)
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Example polynomial regression (Bishop 2006)
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Example: task-related FMRI
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Example: task-related FMRI

It is a multiple regression model that quantitatively assesses whether fFMRI signals exhibit
BOLD-related fluctuations.
On one voxel, the GLM can be expressed as:

Y = Botx1 By + -+ %0+ %11+ +x,0,+e B ER, y, x; €RT

BOLD related signals Nuisance signals




Example: task-related FMRI

measured MR images (sampled at TR, e.g. 0.5s,1s,25s)

>

MR image intensities

Time (sampled every TR s)
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Example: task-related FMRI

measured MR images (sampled at TR, e.g. 0.5s,15s,25)

signal at coordinates (x,y,z)

>

MR image intensities

Time (sampled every TR s)
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Example: task-related FMRI

measured MR images (sampled at TR, e.g. 0.5s,15s,25s)

signal at coordinates (x,y,z)

>

MR image intensities

Time (sampled every TR s)
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The BOLD response

a"a

Y = h * X + €

?

Hemodynamic
Response Function

signal at coordinates (x,y,z)

MR image intensities

L Time
1.0
0.8
0.6
0.4

0.2

amplitude [au]

0.0
-0.2
-0.4

0 5 10 15 20 25
time (seconds)
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The General Linear Model

y h*x, h*x,

=
= |0+ Wn+e
=

—

Measured Expected BOLD
signal response

|
A0




Regularized least squares

Ep(0) + AEy,(0)

where ) is the reqularization coefficient that controls the relative
importance of the data-dependent error ED(O) and the regularization

term Fy(60).
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Regularized least squares

Ep(0) + AEy,(0)

where ) is the reqularization coefficient that controls the relative
importance of the data-dependent error ED(B) and the regularization

term Fy(60).

Common regularizers:
(ridge) 50|53 = 3076
(lasso) ||6;
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Ridge regression

—Z{yn—ews DY S anp
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Bayesian regression approach

Bayesian regression is a probabilistic approach that treats model parameters as random
variables.

It combines prior beliefs with data to obtain posterior distributions of the parameters, allowing
for uncertainty quantification and flexible modeling.

e Prior Distribution: Initial belief about the model parameters.
e Likelihood: Information from the observed data.

e Posterior Distribution: Updated belief after combining prior and likelihood.
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Bayesian Regression Formula

The posterior distribution is calculated using Bayes' theorem:

P(0|x) x P(x|0) - P(0)

where:

e P(0]t) is the posterior distribution of parameters 6 given data.
e P(x]0) is the likelihood of observing data x given parameters 6.
e P(0) is the prior distribution of parameters 6.
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Ridge Regression as a Bayesian Model

Ridge regression can be viewed as a Bayesian model with a normal prior on the weights:

fZ{t — 0" (x,)} + aTa

This corresponds to a likelihood term (First part) and a prior term (second part), where \ controls
the strength of the prior.

P(8)x,)\)  P(x|0) - P(O])\)

N
X exp (—; Z {t, — 0" (Xn)}2> - exp (—;0T9>
n=1
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Interpreting Model Uncertainty

Bayesian methods provide a comprehensive view of uncertainty by quantifying both aleatoric
(data variability) and epistemic (parameter uncertainty) uncertainties.

e Credible Intervals: Provide a range within which the true parameter value is likely to lie.

e Posterior Predictive Distribution: Reflects both types of uncertainty, allowing for
informed decision-making.

e Uncertainty Quantification: Essential for understanding the reliability of predictions and
managing risks.



Example: Causal discovery




Linear Models For Classification
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The classification problem

e Classification predicts discrete values for y (unlike regression which predicts continuous
values)

e Focus on binary classification where y € {0, 1}:

"o

o 0=Negative class (denoted by ".")

",

o 1=Positive class (denoted by "+")

Applications generalize to multi-class problems (more than two categories)

Example: Email spam classification
« 29 = Features of email
. y(“ = 1 for spam, O for non-spam

Training example pair: Input 2 with corresponding label y<i>
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Logistic Regression vs. Linear Regression for
Classification

e Linear regression unsuitable for classification.

« Produces values outside [0, 1] range

« Poor performance on discrete y € {0,1}

« Solution: Modified hypothesis using logistic function
e Logistic Regression Hypothesis:

o hy(z) = g(672)

« Logistic/Sigmoid function definition:

1
14+e*

g(z) =

56/75
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logistic(x)

o
s

1.0 A

0.8 4

0.6

0.2

0.0

Logistic function for Classification

Logistic Function

—— Logistic Function

T T T T T T T T T
-10.0 -7.5 -5.0 —-2.5 0.0 2.5 5.0 7.5 10.0




Logistic function for Classification
e Bounded output: 0 < hy(z) < 1
e Natural probabilistic interpretation

Smooth, S-shaped curve (sigmoid)

Useful property of the derivative:

d 1

- dz1+ e *
1
= - 672
(1+e—z)2( )

9'(2)

1 1
e (1‘ <1+e—z>>
=g(2)(1 —g(2)).
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Maximum likelihood estimator

e Letusassume that
Ply=1|x;0) = hy(z)
P(y=0]z;0) =1—hy(x)
e Note that this can be written more compactly as

p(y | 2;0) = (hy(x))? (1 — hy(z)) ¥

e Likelihood function:
L0)=p(y| X;0)
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Maximum likelihood estimator

e Asin the regression model, it will be easier to maximize the log likelihood:

0(0) =log L(0) = Zy(i) logh () + (1 —y'?)log (1 —h (zV))
i=1
e Gradient ascent update:
0:=0+aVyl(d)

e Stochastic gradient ascent rule?
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Maximum likelihood estimator

e Stochastic gradient ascent rule:

0 1 1 0
770 = (vym ~ V=, gy ) 3 )
1 1 T - T,
— (1 gy~ =0 gy ) 9(070) (1= 9 (672)

=(y(1—g(072)) — (1 —y)g (07))
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Logistic Loss Definition

Alternative notation for logistic regression loss:

e Logistic loss function definition:

14 : R x {0,1} = R

logistic
liogistic(t:y) = ylog(1 + exp(—1)) + (1 — y) log(1 + exp(t))
e Connection to negative log-likelihood:

—(0)=1¢ 0T z,y)

— "logistic

e 0"z is called the logit



Derivative Analysis

e First derivative of logistic loss:

8€logistic <t7 y) - exp(—t)

=y =Y

ot 71+ exp(—t)

1
T 14exp(—t) Y

e Chain rule application for parameter gradient:

0 . aglogistic (tv Z/) ot
a0, = o,

J
1
1 + exp(—t)

= (y = he(x))z;

)z

=(y— ;
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Multi-class Classification

Response variable y can take on any one of kvalues: y € {1,2, ..., k}

p(y | x; 6) is a distribution over k possible discrete outcomes (multinomial distribution)

Multinomial distribution involves k probabilities ¢, ... , ¢;., where Zle 9, =1

Goal: Design a parameterized model that outputs ¢, ... , ¢;. given input =
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Parameter Groups

e Introduce k groups of parameters 6, ... , 0, each §, € R?
e Aimtouse 6] z, ..., 0, z torepresent probabilities P(y = 1 | z;0), ..., P(y = k | x;0)
e Challenges:

« 0z may not be within [0, 1]

e Sum oFHJTJ:'s may not equal 1

e Solution: Use softmax function
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Softmax Function

Definition
The softmax Function softmax : R¥ — R¥ is defined as:

exolt,)
Z?:1 eXp(tj>
softmax (t, ..., t;) = :
exp(ty)

Z?:l exp(t;)

e Inputs ¢ to softmax are called logits

e Output is always a probability vector (non-negative entries summing to 1)



Probabilistic Model with Softmax

e Define logitsast, = 0, x

e Apply softmax to get probabilities:

_ep(ty)
Ply=1|0) ] Xl em(t)
Ply=Fk|xz;0) exp(ty)

Z?Zl exp(tj)

e Compact form:

exp(t;) exp(, z)

Ply=i|z;0) = ¢, = -
e = Z;Llexp(tj) Zleexp(é’;x)
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Negative Log-Likelihood Derivation

Single Example Loss - Negative log-likelihood for (z, )

—logp(y | z,0) = —log (,fxp(ty))

ijl exp(tj)

k
= —t, + log (Z exp(tj)>

J=1

exp(f), =)
= —log - [expressed with parameters]
ijl exp(0; x)

T . k T .
where exp(f, ) is the correct class score and ZFI exp(0; x) is the sum of all class scores.
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Overall Loss Function

Negative Log-Likelihood Loss

The total loss over n training examples (x“), y(i)) and k possible classes:
exp (GTM:E“))
—log | o (i)
1
ijl exp (ej . )

Measures discrepancy between predicted probabilities and true labels

00) =

.
i1
i

where Hj e R4,



Cross-Entropy Loss Definition

Modular Component
Define cross-entropy loss for any logits and label:

le : RF x {1,...,k} = Ry

C

g [P
bee (1o 1g),y) = —log (Zf_l exp@ﬂ)

e Inputs: logits tj = HJTx and true label y
e Output: Non-negative loss value
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Modular Loss Formulation

Combined Expression
Using cross-entropy loss notation:

che L0z, (i)) = Z /.. (logits, label)

1=1 examples
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Gradient of Cross-Entropy Loss

For cross-entropy loss with softmax probabilities ¢, = Zexepiszi 5!
j J

MWty
Tti_¢i Hy =i}

1{y = i} is the indicator function (1 if true, 0 otherwise)
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Gradient of Cross-Entropy Loss

Vectorized form

Ol (t,y)
ot

=¢—e,

e, € Rk:grthnaturalbaﬁsvector(one-hotencoding)
e ¢ € Rk:predktedprobabﬂkyvector



Parameter Gradients - SGD/mini-batch updates?

e Forone example (z,y):

Olee % ot,
00,  ot, 00,
= (¢, — Yy =i})- L
loss gradient input features
e Across all examples (sc(j),y<j)),j =1,....,n
0L(0) & ) y )
5, = 2 (4~ 10 =) ot

where (bgj) is the model's predicted probability for class 7 on example 7.
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Practical implementation

e Compute gradients for each class separately

e Update rule for gradient descent:

JAC,
0; < 0, Uaé)
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