
Introduction to Machine(Deep) Learning

Dr. Alejandro Veloz

inf395.github.io

What is Machine Learning

Arthur Samuel (1959): Field of study that gives computers the ability to

learn without being explicitly programmed.

Shapire: Machine learning studies how to automatically learn to make

predictions based on past observations.

The field of machine learning is concerned with building and

understanding systems that can automatically extract information from

empirical data to improve their performance.

As a scientific discipline, machine learning is an interdisciplinary (and

relatively young) field that focuses both on the theoretical foundations

of systems that learn, reason, and act, as well as on the practical

applications of these systems.

Multiple disciplines

Statistics: Inference from data, probabilistic models, learning theory, …

Mathematics: Optimization theory, numerical methods, tools for theory, …

Engineering: Signal processing, system identification, robotics, control,

information theory, data-mining, …

Computer science: Artificial intelligence, computer vision, information retrieval,

data-structures, implementations, …

Economics: decision theory, operations research, econometrics, …

Psychology/Cognitive science: Computational linguistics, learning, reinforcement

learning, movement control, …

Physics: Energy minimization principles, entropy, capacity, …

Computational Neuroscience: Neural networks, principles of neural information

processing, …

Frequently information flowing back in from application domains, e.g. tools for

bioinformatics getting used in other domains, ...

Machine Learning / Statistical Learning

We would like to design an algorithm that help us to solve different

prediction problems.

The algorithm is designed based on a mathematical model or

function and a dataset.

Extract knowledge from data.

Main challenges of machine learning

Insufficient quantity of training data.

Nonrepresentative training data.

Poor-quality data.

Irrelevant features.

Overfitting the training data.

Underfitting the training data.

Varias disciplinas científicas

Examples 1 (paste): Twitter, google, amazon, credit scoring, trading, put in cut-out from “big
data”, “this business review about sexy data science”. Make second page on this

… y en la vida cotidiana

Examples of ML problems

Examples of ML problems

Examples of ML problems

Examples of ML problems

Examples of ML problems

Six characteristics of ML problems and solutions

Problem class: What is the nature of the training data and what kinds of queries will be

made at testing time?

Assumptions: What do we know about the source of the data or the form of the solution?

Evaluation criteria: What is the goal of the prediction or estimation system? How will the

answers to individual queries be evaluated? How will the overall performance of the

system be measured?

Model type: Will an intermediate model of the world be made? What aspects of the data

will be modeled in different variables/parameters? How will the model be used to make

predictions?

Model class: What particular class of models will be used? What criterion will we use to

pick a particular model from the model class?

Algorithm: What computational process will be used to fit the model to the data and/or to

make predictions?

Problem class

Supervised learning:

Variable 𝑦 is discrete: classification.

Variable 𝑦 is continuous: regression.

Unsupervised learning:

Find similar groups: clustering.

Find a probability function for x: density estimation.

Find a lower dimensionality representation for x: dimensionality reduction and

visualization.

Other types of learning: reinforcement learning, semi-supervised learning, active

learning, multi-task learning.

Problem classes vary according to what kind of data provided and what kind of

conclusions to draw from it.

Supervised learning

Supervised learning is a system where inputs are paired with known outputs. The task is to

learn the mapping from inputs to outputs.

Classification: Output is from a small, finite set.

Binary: Only two classes.

Multi-class: More than two classes.

Regression: Output is from a large, ordered set or continuous set (real numbers).

Training set: a set of 𝑁 instances and their labels/targets:

Dtrain = {(x1, 𝑦1) , … , (x𝑁, 𝑦𝑁)}

where x𝑖 is typically a 𝑑-dimensional vector (input), and 𝑦𝑖 is the predicted real-valued output

(target).

Generalization: ability to correctly predict the label/target 𝑦𝑁+1 of a new instance x𝑁+1.

Unsupervised learning

Given samples

Dtrain = {x1, … , x𝑁} , x𝑖 ∈ ℝ𝐷

the problem is to re-represent them as points in a 𝑑-dimensional

space, where 𝑑 < 𝐷.

Unsupervised learning does not rely on learning a mapping from

inputs to outputs using pairs of input and output examples.

Instead, it involves working with a dataset without explicit labels,

with the goal of discovering patterns or underlying structure within

the data.

Unsupervised learning - clustering

Given samplesDtrain = {x1, … , x𝑁}, where x𝑖 ∈ ℝ𝑑, the goal is to find

a partitioning (or “clustering’ ’) of the samples that group similar samples.

Objectives vary based on sample similarity definitions, aiming to

minimize average intra-cluster distance and maximize average

inter-cluster distance.

Other methods perform a soft clustering, in which samples may be

assigned 0.9 membership in one cluster and 0.1 in another.

Unsupervised learning

Clustering rare diseases example

Ra
re

 d
ise

as
es

Signs

Clustering rare diseases example

Ra
re

 d
ise

as
es

Signs

Aplicación de FCM en
segmentación de GBM

● Clases: materia blanca, materia
gris, líquido cefalorraquídeo –
fondo, tumor-grasa,
C = 4

● Exponente de difusividad,
m = 2

● Criterio de similitud,
ε = 10-5

● Nº de iteraciones máximas,
n = 100

Resultado para cuatro clases visto como imágenes (U)

Unsupervised learning - density estimation

Given samples

Dtrain = {x1, … , x𝑁} , x𝑖 ∈ ℝ𝑑

drawn i.i.d. from some distribution Pr(𝑋), the goal is to predict the
probability Pr(𝑋 = x𝑁+1) of an element drawn from the same

distribution.

Density estimation sometimes also plays a role as a “subroutine” in the

overall learning method for supervised learning.

• What are the most
probable outcomes?

• What are the most
probable signs?

• What are other
possible diseases?

The network perspective

Zhou et al.,
Human symptoms-
disease network.
Nature Commun.
2014

Unsupervised learning - causal discovery

Unsupervised learning - dimensionality reduction

Given samples

Dtrain = {x1, … , x𝑁} , x𝑖 ∈ ℝ𝐷

the problem is to re-represent them as points in a 𝑑-dimensional space, where 𝑑 < 𝐷.

The goal is typically to retain information in the data set that will, e.g., allow elements

of one class to be distinguished from another.

Dimensionality reduction is a standard technique that is particularly useful to visualize

or understand high-dimensional data.

Unsupervised learning

Unsupervised learning

Unsupervised learning

Unsupervised learning

Independent component analysis (ICA)

Independent component analysis (ICA)

Independent component analysis (ICA)

The ICA assumes that observations and sources are related through:

𝐲1 = 𝑎11𝐱1 + 𝑎12𝐱2 + … + 𝑎1𝑛𝐱𝑛

𝐲2 = 𝑎21𝐱1 + 𝑎22𝐱2 + … + 𝑎2𝑛𝐱𝑛

⋮
𝐲𝑝 = 𝑎𝑝1𝐱1 + 𝑎𝑝2𝐱2 + … + 𝑎𝑝𝑛𝐱𝑛

In matrix form:

𝐗 = 𝐀−1𝐘

where:

𝐗 = [𝐱1, 𝐱2, … , 𝐱𝑛]𝑇 are the independent source signals

𝐘 = [𝐲1, 𝐲2, … , 𝐲𝑝]𝑇 are the observed mixed signals

𝐀−1 is the mixing matrix (inverse of the unmixing matrix)

ICA - EEG

Sequence learning

The goal is to learn a mapping from input sequences 𝑥0, … , 𝑥𝑁 to output

sequences 𝑦1, … , 𝑦𝑀.

The mapping is typically represented as a state machine, with one

function 𝑓𝑠 used to compute the next hidden internal state given the

input, and another function 𝑓𝑜 used to compute the output given the

current hidden state.

It is supervised in the sense that we are told what output sequence to

generate for which input sequence, but the internal functions have to be

learned by some method other than direct supervision, because we don’t

know what the hidden state sequence is.

Image to text

Reinforcement learning

The goal is to learn a mapping from input values (typically assumed

to be states of an agent or system, e.g. the velocity of a moving car)

to output values (typically control actions, e.g. if to accelerate or hit

the brake).

We need to learn the mapping without a direct supervision signal to

specify which output values are best for a particular input.

the learning problem is framed as an agent interacting with an environment.

Reinforcement learning

The interaction setting is the following:

The agent observes the current state 𝑠𝑡.
Select an action 𝑎𝑡.
It receives a reward, 𝑟𝑡, which typically depends on 𝑠𝑡 and possibly 𝑎𝑡.
The environment transitions probabilistically to a new state, 𝑠𝑡+1, with a distribution that
depends only on 𝑠𝑡 and 𝑎𝑡.
The agent observes the current state, 𝑠𝑡+1.
…

Reinforcement learning

The goal is to find a policy 𝜋, mapping 𝑠 to 𝑎, (that is, states to
actions) such that some long-term sum or average of rewards 𝑟 is
maximized.

This setting is very different from either supervised learning or

unsupervised learning, because the agent’s action choices affect

both its reward and its ability to observe the environment.

It requires careful consideration of the long-term effects of actions

as well as all the other issues related to supervised learning.

Other settings

In semi-supervised learning, we have a supervised-learning training set, but there

may be an additional set of x𝑖 values with no known 𝑦𝑖. These values can still be
used to improve learning performance (if they are drawn from Pr(𝑋) that is the
marginal of Pr(𝑋, 𝑌) that governs the rest of the data set).
In active learning, it is assumed to be expensive to acquire a label 𝑦𝑖 (imagine

asking a human to read an x-ray image), so the learning algorithm can sequentially

ask for particular inputs x𝑖 to be labeled and must carefully select queries to learn

as effectively as possible while minimizing the cost of labeling.

In transfer learning (also calledmeta-learning), there are multiple tasks, with data

drawn from different, but related, distributions. The goal is for the experience

with previous tasks to apply to learning a current task in a way that requires a

decrease in experience with the new task.

Assumptions

The kinds of assumptions that we can make about the data source or the solution

include:

The data are independent and identically distributed (i.i.d.).

The data are generated by a Markov chain (i.e., the outputs depend only on the

current state, without additionalmemory).

The process generating the data might be adversarial.

The “true’ ’ model that generates the data can be perfectly described by one of a

particular set of hypotheses.

Evaluation criteria

Once we have specified a problem class, we need to say what makes an output or the answer to

a query good, given the training data.

We specify evaluation criteria at two levels: how an individual prediction is scored, and how the

overall behavior of the prediction or estimation system is scored.

The quality of predictions from a learned model is often expressed in terms of a loss function.

A loss functionL (𝑔, 𝑎) tells you howmuch you will be penalized for making a guess 𝑔when the

answer is actually 𝑎.

Evaluation criteria
There are many possible loss functions:

0-1 loss applies to predictions drawn from finite domains.

L (𝑔, 𝑎) = {
0 if 𝑔 = 𝑎
1 otherwise

Squared loss

L (𝑔, 𝑎) = (𝑔 − 𝑎)2

Absolute loss

L (𝑔, 𝑎) = |𝑔 − 𝑎|

Asymmetric loss

L (𝑔, 𝑎) =
⎧{
⎨{⎩

1 if 𝑔 = 1 and 𝑎 = 0
10 if 𝑔 = 0 and 𝑎 = 1
0 otherwise

Evaluation criteria

Any given prediction rule will usually be evaluated based on multiple predictions and the loss of

each one.

At this level, we might be interested in:

Minimizing expected loss over all the predictions (also known as risk)

Minimizing maximum loss: the loss of the worst prediction

Minimizing or bounding regret: how much worse this predictor performs than the best one

drawn from some class

Characterizing asymptotic behavior: how well the predictor will perform in the limit of

infinite training data

Finding algorithms that are probably approximately correct: they probably generate a

hypothesis that is right most of the time.

Model type

Non-parametric models

Parametric models

Model type / Non-parametric models

In some cases, we can answer queries directly from the training data

without building a model or learning parameters.

For example, in regression or classification, we might generate an

answer to a new query by averaging answers to similar queries, as in

the nearest neighbormethod.

Model type / Parametric models

This two-step process is more typical:

1. “Fit’ ’ a model (with some a-prior chosen parameterization) to the

training data.

2. Use the model directly to make predictions.

Example: olympic 100m data

Dataset:

Model:

Linear model 𝑦 = 𝑓(𝑥, w), where 𝑦 is the time in seconds

and 𝑥 the year of the competition.

The linear model is given by:

𝑦 = 𝑤1𝑥 + 𝑤0

where 𝑤0 is the intercept and 𝑤1 is the slope.

We use w to refer both to 𝑤0 and 𝑤1.

Example: olympic 100m data

Evaluation criteria (loss function):

We use an objective function to estimate the parameters 𝑤0
and 𝑤1 that best fit the data.

In this example, we use a a least squares objective function:

𝐸 (𝑤0, 𝑤1) = ∑
∀𝑖

(𝑦𝑖 − 𝑓 (𝑥𝑖))
2

= ∑
∀𝑖

[𝑦𝑖 − (𝑤1𝑥𝑖 + 𝑤0)]2 .

By minimizing the error with respect to w, we get the

solution 𝑤0 = 36.4 and 𝑤1 = −1.34 × 10−2.

Example: olympic 100m data

Data and model:

Predictions:

What does the model predict for 2012?

If we say 𝑥 = 2012, then

𝑦 = 𝑓(𝑥, w) = 𝑓(𝑥 = 2012, w)
= 𝑤1𝑥 + 𝑤0

= (−1.34 × 10−2) × 2012 + 36.4 = 9.59.

(The actual value was 9.63)

Model type / Parametric models

The model will be some hypothesis or prediction rule 𝑦 = ℎ(𝑥; Θ) for some functional

form ℎ.
The term hypothesis has its roots in statistical learning and the scientific method, where

models or hypotheses about the world are tested against real data and refined with more

evidence or observations.

Note that the parameters themselves are only part of the assumptions we are making

about the world.

The model itself is a hypothesis that will be refined with more evidence.

The idea is that Θ is a set of one or more parameter values that will be determined by

fitting the model to the training data and then remaining fixed during testing.

Model type / Parametric models

Given a new x𝑁+1, we would then make the prediction ℎ(x𝑁+1; Θ).

The fitting process is posed as an optimization problem:

Find parameter values Θ that minimize a criterion involving Θ and the data.

If the true underlying data distribution Pr(𝑋, 𝑌) was known:
The optimal strategy would be to predict values that minimize the expected loss (also known

as test error).

Model type / Parametric models

In practice, since Pr(𝑋, 𝑌) is unknown:
Instead, we minimize the training error by finding Θ that minimizes the average loss in the

training data.

The typical criterion to minimize is:

E (ℎ; Θ) = 1
𝑛

𝑛
∑
𝑖=1

L (ℎ(x𝑖; Θ), 𝑦𝑖) ,

whereL (𝑔, 𝑎) measures the penalty for predicting 𝑔 when the true value is 𝑎.

Minimizing training error alone is often not sufficient:

This can lead to overfitting, where the model fits the current data well but does not

generalize to new values of 𝑥.

Model class and parameter fitting

A model class M is a set of possible models, typically parameterized by a

vector of parameters Θ.

Model class and parameter fitting

Model Assumptions:

We need to decide on the form of the model.

For regression, we might use a linear prediction rule:

ℎ(x; 𝜃, 𝜃0) = 𝜃⊤x + 𝜃0

where the parameter vector Θ = (𝜃, 𝜃0).

Model Classes:

“Parametric’ ’ models: Restricted to model classes with a fixed, finite number of parameters.

“Non-parametric’ ’ models: Models that do not make this restriction.

Model class and parameter fitting

Model Selection:

The model class can sometimes be specified directly by the practitioner.

Alternatively, several model classes may be tried, and the best is chosen based on some

objective function.

This process is calledmodel selection:

▶ Model selection: pick a model classM from a (usually finite) set of possible model classes.

▶ Model fitting: pick the specific model inM by specifying its (usually continuous) parameters Θ.

Algorithm

Algorithmic Problem:

After defining a class of models and a scoring method, the challenge is to design a

computational procedure to find a good model in the class.

For example, finding the parameter vector that minimizes training error may use familiar

optimization algorithms, such as least squares, when ℎ is being fitted to the data 𝑥.

Optimization Approaches:

Sometimes, generic optimization software can be used to solve the parameter estimation

problem.

In many cases, algorithms are specifically designed for machine learning problems or

particular hypothesis/model classes.

Beyond Direct Optimization:

Some algorithms, such as the perceptron for linear classifiers, do not explicitly optimize a

particular criterion, yet are historically significant and effective for certain tasks.

Example polynomial regression (Bishop 2006)

0 1x

−1

1

t

Example polynomial regression (Bishop 2006)

xn

tn

y(xn,w)

x

t

Example polynomial regression (Bishop 2006)

ℎ(𝑥, 𝑤) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + … + 𝑤𝑀𝑥𝑀

𝐸(𝑤) =
𝑁

∑
𝑛=1

(ℎ (𝑥𝑛, 𝑤) − 𝑡𝑛)2

Example polynomial regression (Bishop 2006)

ℎ(𝑥, 𝑤) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + … + 𝑤𝑀𝑥𝑀

0 1x

−1

1

t

M = 0

Example polynomial regression (Bishop 2006)

ℎ(𝑥, 𝑤) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + … + 𝑤𝑀𝑥𝑀

0 1x

−1

1

t

M = 1

Example polynomial regression (Bishop 2006)

ℎ(𝑥, 𝑤) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + … + 𝑤𝑀𝑥𝑀

0 1x

−1

1

t

M = 3

Example polynomial regression (Bishop 2006)

ℎ(𝑥, 𝑤) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + … + 𝑤𝑀𝑥𝑀

0 1x

−1

1

t

M = 9

Example polynomial regression (Bishop 2006)

0 1x

−1

1

t

M = 0

0 1x

−1

1

t

M = 1

0 1x

−1

1

t

M = 3

0 1x

−1

1

t

M = 9

0 3 6 9

M

0

1

E
R

M
S Training

Test

Example polynomial regression (Bishop 2006)

0 1x

−1

1

t

N = 15

Example polynomial regression (Bishop 2006)

0 1x

−1

1

t

N = 100

Cross-validation

run 1

run 2

run 3

run 4

Data sources

Data sources

Sources of health data

Institution-based sources
Hospitals, health centers, community-based
institutions/service delivery mechanisms

Research-related sources
Publications repositories, diseases databases, specific
data repositories.

HIS application systems

Sources of health data

• Electronic medical records (private).
• Publications databases, e.g. Pubmed.
• Public repositories: OMIM, ORPHANET, and many

others.
• Images/signals (MRI, CT, RX)

• Data types:
– Images
– Text

ORPHANET

Pubmed

https://github.com/beamandrew/medical-data/

Medpix

Autism

https://team.inria.fr/parietal/

ADNI

Machine Learning project ckecklist

1. Frame the problem and look at the big picture.

2. Get the data.

3. Explore the data to get insights.

4. Prepare the data to better expose the underlying data patterns.

5. Explore many different models and shortlist the best ones.

6. Fine-tune your models and combine them into a solution.

7. Present your solution.

Dataset: bike rentals

The feature vector x includes the following features: hour, temperature, humidity, wind

speed, visibility, Dew point temperature, solar radiation, rainfall, snowfall, seasons, holiday,

functioning day.

The variables hour, temperature, humidity, wind speed, visibility, Dew point temperature,

solar radiation, rainfall, snowfall can be considered as continuous.

The variables seasons, holiday, and functioning day are categorical variables.

The output variable 𝑦 is the number of bikes rented.

Explore the data

Study correlations between attributes

The correlation coefficient between two RVs𝑋 and 𝑌 is given by:

𝜌𝑋,𝑌 = 𝐸 {(𝑋 − 𝜇𝑋) (𝑌 − 𝜇𝑌)}
𝜎𝑋𝜎𝑌

=
𝜎𝑋,𝑌

𝜎𝑋𝜎𝑌
,

where −1 < 𝜌𝑋,𝑌 < 1 and 𝜎𝑋,𝑌 is known as the covariance between 𝑋 and 𝑌.

Correlation and dependence

Data preparation - cleaning

Remove the outliers in your data (optional).

Handle the missing values:

Filling them in using the mean, the median, or any other value.

Drop the feature if most of the instances have a missing value.

Drop the instance if you have several instances with missing values.

You can add an additional feature indicating whether the instance has a missing feature or

not and then use a value of 0 for the missing feature.

Data preparation - cleaning

Most ML methods require features that are numbers rather than categories (usually

appearing as text).

Also, if the feature is categorical, it is useful to use a different representation.

In the previous example of bike rentals, there were three categorical features:

Season that can take four categories.

Holiday and functioning day, each taking two categories.

Data preparation - cleaning

For example, the feature season takes values autumn, winter, spring and summer.

The way to handle this feature is to use a representation known as one-hot encoding to

obtain a higher-dimensional binary representation for each value.

autumn = [1, 0, 0, 0]
winter = [0, 1, 0, 0]
spring = [0, 0, 1, 0]
summer = [0, 0, 0, 1]

The values of the feature season do not have a natural order, therefore one should not

map these values to numbers like 1 for autumn, 2 for winter, 3 for spring and 4 for summer.

The ML method will try to find regularities within these ordered values even though they

do not exist.

Data preparation - Feature selection/engineering

You have the option to remove features that are uninformative.

You have the option to discretize a continuous feature (e.g. binning).

You can also create new features from the ones available.

For example, instead of using the feature 𝑥, you can use log(𝑥),
√

𝑥, 𝑥2, etc.

Feature scaling

Several ML methods do not perform well when the input features have very different

scales.

In the rental bike example, the variable humidity is in the range 0 to 100, whereas the wind

speed is in the range 0 to 8.

Two ways to get all features to have the same scale are normalization (or min-max scaling)

and standardization (or z-score normalization).

Feature scaling

In normalization, we map the range of values that a feature takes to the range [−1, 1] or
[0, 1].
The normalization formula is given by:

̄𝑥𝑗 =
𝑥𝑗 − min𝑥𝑗

max𝑥𝑗 − min𝑥𝑗
,

wheremin𝑥𝑗 andmax𝑥𝑗 are the minimum and maximum values of the feature in the

training set.

In standardization, the features are scaled so that they have mean zero and standard

deviation equal to one,

̂𝑥𝑗 =
𝑥𝑗 − 𝜇𝑗

𝜎𝑗
,

where 𝜇𝑗 and 𝜎𝑗 are the mean and standard deviation of the feature 𝑥𝑗.

scikit-learn

What is Deep Learning

Good old Neural Networks, with more layers/modules.

Non-linear, hierarchical, abstract representations of data.

Flexible models with any input/output type and size.

Why Deep Learning Now?

Better algorithms &

understanding

Computing power (GPUs,

TPUs, …)

Data with labels

Open source tools and

models

Why Deep Learning Now?

Better algorithms &

understanding

Computing power (GPUs,

TPUs, …)

Data with labels

Open source tools and

models

DL Today: Speech-to-Text

DL Today: Vision

DL Today: Vision

DL Today: NLP

DL Today: NLP

DL Today: Vision + NLP

DL Today: Image translation

DL Today: Generative models

Sampled celebrities [Nvidia 2017]

DL Today: Generative models

StackGAN v2 [Zhang 2017]

Language / Image models
Open-AI GPT-3, or DALL-E: https://openai.com/blog/dall-e/

DL in Science: Genomics

DL in Science: Chemistry, Physics

DL for AI in games

AlphaGo/Zero: Monte Carlo Tree Search, Deep Reinforcement Learning, self-play

Frameworks and Computation Graphs

Computation Graph

Neural network = parametrized, non-linear function

Computation Graph

Computation graph: Directed graph of functions, depending on parameters (neuron weights)

Computation Graph

Combination of linear (parametrized) and non-linear functions

Computation Graph

Not only sequential application of functions

Computation Graph

Automatic computation of gradients: all modules are differentiable!

Theano (now Aesara), Tensorflow 1, etc. build a static computation graph via static declarations.

Tensorflow 2, PyTorch, JAX, etc. rely on dynamic differentiable modules: “define-by-run”.

Vector computation on CPU and accelerators (GPU and TPU).

Computation Graph

Simple keras implementation

model = Sequential()

model.add(Dense(H, input_dim=N)) # defines W0

model.add(Activation("tanh"))

model.add(Dense(K)) # defines W1

model.add(Activation("softmax"))

